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ABSTRACT

In dynamo power-based scaling laws, the power P injected by
buoyancy forces is measured by a so-called flux-based Rayleigh
number, denoted as Ra�Q (see Christensen and Aubert, Geophys. J.
Int. 2006, vol. 166, pp. 97–114). Whereas it is widely accepted that this
parameter is measured (as opposite to controlled) in dynamos driven
by differential heating, the literature is much less clear concerning
its nature in the case of imposed heat flux. We clarify this issue by
highlighting that in that case, the Ra�Q parameter becomes controlled
only in the limit of large Nusselt numbers (Nu � 1). We then address
the issue of the robustness of the original relation between P and
Ra�Q with the geometry and the thermal boundary conditions. We
show that in the cartesian geometry, as in the spherical geometry
with a central mass distribution, this relation is purely linear, in
both differential and fixed-flux heating. However, we show that in
the geometry commonly studied by geophysicists (spherical with
uniform mass distribution), its validity places an upper-bound on
the strength of the driving which can be envisaged in a fixed Ekman
number simulation. An increase of the Rayleigh number indeed yields
deviations (in terms of absolute correction) from the linear relation
between P and Ra�Q . We conclude that in such configurations, the
parameter range for which P is controlled is limited.
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1. Introduction

Power-based scaling laws introduced in Christensen and Aubert (2006) have been very
successful in the dynamos community, and have been further developed in many recent
studies (e.g. Jones 2011, Davidson 2013, Stelzer and Jackson 2013, Oruba and Dormy
2014). Davidson (2013) proposed a modified version of these original scaling laws, which
is dedicated to planetary dynamos and which slightly differs from the original one because
the non-linear inertial term is assumed to be negligible. Oruba and Dormy (2014) pointed
out some “weaknesses” of the original scaling laws for the magnetic field strength. They
stress that the power-based scaling laws essentially reflect the statistical balance between
energy production and dissipation for saturated dynamos, and therefore work for any
dynamo. Besides, these laws relate measured quantities (e.g. the magnetic field strength, or
the flow strength) to another measured quantity, which is the power injected by buoyancy
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forces, as measured by the flux-based Rayleigh number Ra�
Q (see (19) in Christensen and

Aubert 2006).
The flux-based Rayleigh number Ra�

Q involves the advected heat flow which is the
difference between the time-averaged total heat flow and the conductive heat flow cor-
responding to the realized difference of temperature between both boundaries. There
exists several contradictions and/or ambiguities in the literature concerning the nature
of this parameter (controlled vs. measured). Whereas there is a wide consensus on its
measured nature in dynamos driven by an imposed difference of temperature between the
boundaries, the literature is much less clear concerning its nature in the case of dynamos
driven by an imposed heat flux. In Christensen (2010), it is suggested to be a control
parameter in the context of heat flux heating, whereas Aubert et al. (2009) refer to Ra�

Q as
being controlled only in the limit of vigorous enough convection. Finally, Dietrich et al.
(2013) introduce Ra�

Q as a control parameter, but the parameter they denote as Ra�
Q

corresponds to a slightly different definition from that of Christensen and Aubert (2006):
it involves the heat flux at the outer boundary.With this definition, Ra�

Q becomes a control
parameter entering their governing equations.

The issue of the nature of the Ra�
Q parameter is important, since this parameter is

used to quantify the injected power involved in the power-based scaling laws. Such laws
are then re-interpreted in the context of natural objects. The relation between Ra�

Q and
the injected power has first been highlighted by Christensen and Aubert (2006) in the
particular context of convective dynamos, driven by an imposed difference of temperature
between boundaries, in the spherical geometry with a linear radial profile of gravity. In this
context, they stressed that for vigorous enough flows, the injected power is proportional
to Ra�

Q.
The configuration in Christensen and Aubert (2006) is however one among the numer-

ous existing configurations in the literature on convective dynamos. Numerous mech-
anisms for driving convection have indeed been considered. Table 1 in Kutzner and
Christensen (2002), for example, gathers a sample of the thermal or chemical boundary
conditions implemented in numerical dynamos. Either the temperature, or the heat flux,
can be fixed at one or both boundaries, and internal heating (or secular cooling) can also be
implemented through a source (or sink) term in the temperature equation. Instead of the
isothermal boundary conditions, these more complex configurations involving fixed heat
flux can be used in an attempt to increase the relevance of numerical models to natural
objects. They have been investigated in both purely convective studies (e.g. Gibbons et al.
2008), and in dynamo configurations, as in Sakuraba and Roberts (2009) and Hori et al.
(2012).

Concerning the domain geometry, more attention has been paid to the spherical
geometry because of its greater geophysical and astrophysical relevance. In this geometry,
the radial profile of gravity commonly used by geophysicists corresponds to a uniform
distribution of mass, and is therefore linear (e.g. Christensen et al. 2001), whereas studies
motivated by giant planets and stars correspond to a central mass and have thus been
performed with a gravity profile proportional to 1/r2 (e.g. Jones et al. 2011). In a purely
hydrodynamical context, Gastine et al. (2015) tested the effect of various radial distribu-
tions of gravity on the boundary layer asymmetry. Nevertheless, the cartesian geometry
is also interesting, as stressed by several recent studies (e.g. Stellmach and Hansen 2004,
Tilgner 2014, Guervilly et al. 2015).
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The issue of the robustness of the relation between the injected power and the Ra�
Q

parameter introduced by Christensen and Aubert (2006) is essential. It is important to
understand towhat extent such a relation can be used in numericalmodels and in planetary
dynamos, and how it is modified by both the geometry and the driving mechanism.
Gastine et al. (2015) shows analytically that the expression derived by Christensen and
Aubert (2006) is valid (up to a geometrical factor) whatever the distance to the convection
threshold for the particular choice of a gravity profile of the form g ∼ r−2. The case of
fixed-flux boundary conditions has been examined by Aubert et al. (2009) in a study of the
palaeo-evolution of the geodynamo. Their approach is based on the assumption that the
total dissipation is proportional to the difference between the inner- and outer- boundary
originated mass anomaly fluxes (see Buffett et al. 1996). This assumption however compli-
cates the comparison with the analytical derivations of the type of Christensen and Aubert
(2006).

The question of the nature (controlled vs. measured) of Ra�
Q, depending on the driving

mechanism for convection clearly represents a gap in the literature. This paper aims at
clarifying this issue, in a first part. The second objective of this paper is to further investigate
the relation between the injected power and the flux-based Rayleigh number, in order to
stress under which conditions the two quantities are proportional one to the other. The
effect of the geometry and of the thermal heating mechanism is addressed. Our study is
based on an analytical approach, supported by a database of numerical simulations.

2. Governing equations and control parameters

We study dynamos in the rotating thermal convection problem. The governing equations
in the rotating reference frame under the Boussinesq approximation can be written in their
non-dimensional form as

∂tu + (u·∇)u = −∇π + Pr∇2u − 2
Pr
E

eΩ × u + Ra Pr θ eg + (∇ × B
) × B , (1)

∂t B = ∇ × (u × B) + Pr
Pm

∇2B , (2)

∂tθ + (u·∇)
(
θ + Ts

) = ∇2θ , (3)

∇·u = ∇·B = 0 , (4)

where u is the velocity field, B the magnetic field and θ the deviation from the conductive
temperature profile Ts. In the following, the total temperature will be denoted as T . The
unit vectors eΩ and eg indicate the direction of the rotation axis and of gravity, respectively.
They are defined such that Ω = Ω eΩ and g = −g eg .

The system (1–4) has been written by using d as unit of length, d2/κ as unit of time
and √

ρμκ/d as unit of magnetic field. It yields the non-dimensional parameters E =
ν/(Ωd2) (Ekman number), Pr = ν/κ (Prandtl number) and Pm = ν/η (magnetic
Prandtl number), where ν is the kinematic viscosity of the fluid, κ = k/(ρc) is the thermal
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diffusivity, η is the magnetic diffusivity and Ω is the rotation rate. We introduce the
Rayleigh number

Ra = αg�T�d3

νκ
, (5)

where α is the coefficient of thermal expansion, g the gravitational acceleration and �T�

the difference of temperature between both boundaries. Note that in case of an imposed
flux boundary condition, the temperature must be averaged both in space (on the sphere)
and in time in order to obtain a unique value for�T�. Dimensional quantities are denoted
with a star (�).

Our analysis will be tested against a wide database of 184 direct numerical simulations
kindly provided by U. Christensen, corresponding to rigid boundaries. Most of them were
previously reported in Christensen and Aubert (2006), Olson and Christensen (2006) and
Christensen (2010). It covers the parameter range E ∈ [

10−6, 10−3], Pr ∈ [
10−1, 102

]
,

Pm ∈ [
4 × 10−2, 66.70

]
and Ra ∈ [

105, 2.2 × 109
]
.

The nature (controlled vs. measured) of parameters which measure the strength of
convection depends on the thermal boundary conditions. For imposed temperature at
both boundaries (differential heating, DH), the unit of temperature is �T�, and the
Rayleigh number Ra defined in (5) is a control parameter. Such is however not the case in
configurations with fixed heat flux (fixed-flux heating, FF). In such configurations, either
the heat flow Q� is fixed at both boundaries, in which case the temperature is defined up
to a constant, or Q� is fixed at the outer boundary and the temperature is fixed at the
inner boundary. For fixed-flux heating, a natural choice of unit of temperature is then
ε2Q�/(κρcd). It involves a factor ε related to the geometry of the domain (defined later in
the text). It is convenient to define a modified Rayleigh number

RaΦ = αgε2Q�d2

ρcνκ2 , (6)

where Q� is the time-averaged heat flow across the layer (Joules per second). In fixed-flux
heating, this parameter is indeed controlled, whereas the classical Rayleigh number is not.

TheNusselt numberNu allows to characterize the convective heat transport. It is defined
as the ratio of the total time-averaged heat flux across the layerQ� to the “purely diffusive”
heat flow Q�

cond, which corresponds to the heat flux which would be measured in the
layer if the fluid was at rest with the realized �T�. This last parameter corresponds to
the difference between the temperature averaged in time and on both boundaries. Hence,
Q�
cond = ε−2κρcd�T� and

Nu = Q�

ε−2κρcd�T�
, (7)

that can be re-expressed as
Nu = RaΦ

Ra
. (8)

Besides, the quantity Q�
adv = Q� − Q�

cond is often used in the literature because
independent on the vertical/radial coordinate (in the cartesian/spherical geometry). It
allows to define the flux-based Rayleigh number as

Ra�
Q = αgQ�

advε
2

ρcΩ3d4
= Ra(Nu − 1)

E3

Pr2
= (RaΦ − Ra)

E3

Pr2
. (9)
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The above expression can be re-expressed as

Ra�
Q

Nu
Nu − 1

= RaΦE3

Pr2
. (10)

In both differential and fixed-flux heating, Ra�
Q is not a control parameter, since it

involves both Ra and RaΦ , which are respectively controlled, depending on the thermal
boundary conditions. Nevertheless, according to (10), in the case of fixed-heat flux and if
the convection is vigorous enough (i.e. Nu � 1), Ra�

Q tends to a combination of control
parameters RaΦE3/Pr2. The approximation Nu � 1 is very sensible for natural objects
(stars or planets), but is not well justified for numerical dynamos (in present simulations,
most dynamos operate at Nu < 10).

3. Relation between injected power and the flux-based Rayleigh number

The success of the Ra�
Q parameter relies on its relationwith the power injected by buoyancy

forces, first derived inChristensen andAubert (2006). The injected powerP� (in units Joule
per second) in its dimensional form is

P� =
∫∫∫

ραgθ�eg · u� dV� , (11)

which, in non-dimensional form (in units ρκ3d−1), becomes
[
PDH

PFF

]
=

[
RaPr
RaΦPr

] ∫∫∫
fgθ eg · u dV , (12)

where fg is a factor which depends on the geometry and on the radial profile of g . In the
cartesian geometry with uniform gravity, fg = 1. In the spherical geometry, the gravity g
involved in the definitions (5) and (6) of Ra and RaΦ corresponds to the value of gravity
at ro. This leads to fg = (

r2o/d2
)
r−2 for g ∼ r−2, and fg = (

d/ro
)
r for g ∼ r. Note that in

the above expressions, θ can equivalently be replaced by the total temperature T , because
the integral over the volume of

(
Ts eg · u

)
vanishes.

This section aims at studying how the relation between the injected power and the Ra�
Q

parameter is affected by the geometry (cartesian vs. spherical geometry, profile of gravity)
and by the thermal boundary conditions (differential vs. fixed-flux heating).

3.1. Expressions of heat flows in the cartesian and spherical geometries

In the cartesian configuration that is usually considered, the unit vectors eΩ and eg are
parallel to the z-axis. The boundaries are separated by a distance d, and located at the
planes z = 0 and z = 1. The horizontal coordinates are denoted as x and y, and vary
between 0 and ε−1, where ε = d/L (L being the physical length of the domain in the x
and y directions). The gravity is assumed to be uniform in the domain. The conductive
temperature profile is solution of ∇2Ts = 0. The choice of unit of temperature fixes
dTs/ dz to unity, and the constant is chosen such that Ts(0) = 1, this leads to Ts = 1− z .
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Theheat flowQ� across the layer, which is independent on z, is the sumof the conductive
heat flow Q�

c and the advective heat flow Q�
a, both of these being dependent on z. They are

defined as

Q�
c (z) = κρc

∫∫
−∇(T�

s + θ�) · eg dx�dy�, Q�
a(z) = ρc

∫∫
T� u�

z dx
�dy� .

(13)
Using the above expression of Ts, the conductive heat flow becomes

[
Q�
c
DH(z)

Q�
c
FF(z)

]
=

[
κρcd�T�

ε2Q�

] (
ε−2 −

∫∫
∂θ

∂z
dx dy

)
(14)

and the advective heat flow can be re-written as[
Q�
a
DH(z)

Q�
a
FF(z)

]
=

[
κρcd�T�

ε2Q�

] ∫∫
T uz dx dy . (15)

In the spherical configuration, the unit vector eg is radial, and is thus denoted as er in
following. The boundaries are spherical, and they are located between ri and ro (ri and ro
are dimensional). In our study, the radial profile of gravity is assumed to be either linear,
or proportional to 1/r2. The parameter d corresponds to the thickness of the shell ro − ri,
and the geometrical factor ε is here defined as ε2 = d2/(4πrori) = (

1 − χ
)2

/
(
4πχ

)
,

where χ = ri/ro. Replacing ε2 by its definition in (9) yields the expression introduced by
Christensen and Aubert (2006)

Ra�
Q = 1

4πrori

αgQ�
adv

ρcΩ3d2
. (16)

Concerning the conductive temperature profile Ts, the choice of temperature units fixes
r2 dTs/ dr = −χ(1 − χ)−2 and we chose the constant such that Ts(ri/d) = 1. This yields
Ts = χ(1 − χ)−2r−1 − χ(1 − χ)−1 and the corresponding dimensional expressions

T�
s
DH = �T�riro

d
1
r�

+
(
1 − �T� ro

d

)
, T�

s
FF = Q�

4πκρc
1
r�

+
(
1 − Q�

4πκρcri

)
.

(17)
Using (17) allows to re-express the conductive heat flow

Q�
c (r) = κρc

∫∫
−∇(T�

s + θ�) ·er r2 sin θ dθ dφ (18)

as [
Q�
c
DH(r)

Q�
c
FF(r)

]
=

[
κρcd�T�

ε2Q�

](
ε−2 −

∫∫
∂θ

∂r
r2 sin θ dθ dφ

)
, (19)

and the advective heat flow

Q�
a(r) = ρc

∫∫
T� u�

r r
2 sin θ dθ dφ , (20)
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as [
Q�
a
DH(r)

Q�
a
FF(r)

]
=

[
κρcd�T�

ε2Q�

] ∫∫
T ur r2 sin θ dθ dφ . (21)

The above expressions of the conductive and advective heat flows will be used to re-express
the injected power (12) as a function of the Ra�

Q parameter in the two next sections.

3.2. Differential heating

For differential heating, the Nusselt number defined in (7) can be re-expressed in the
cartesian geometry, using (14a) and (15a) (Here fter the labels “a” and “b” used on matrix
equation references refer to the top and bottom row, respectively.), as

Nu = 1 − ε2
∫∫

∂θ

∂z
dx dy + ε2

∫∫
T uz dx dy , (22)

and in the spherical geometry, using (19a) and (21a), as

Nu = 1 − ε2
∫∫

∂θ

∂r
r2 sin θ dθ dφ + ε2

∫∫
T ur r2 sin θ dθ dφ . (23)

On time average and in the absence of internal sources or sinks of energy, the above
expressions are independent on the radius r.

In the cartesian geometry, the expression (22) allows to rewrite the injected power (12a)
as

PDH = RaPr
∫ [

ε−2(Nu − 1) +
∫∫

∂θ

∂z
dx dy

]
dz . (24)

The integral in the second term vanishes because θ is zero at both boundaries, which leads
to

PDH =
(
Pr
E

)3
Ra�

Q ε−2 . (25)

In the spherical geometry with a radial profile of gravity of the form g ∼ r−2, the
injected power (12a) can be re-expressed as

PDH = RaPr
r2o
d2

∫∫∫
T er·u dr sin θ dθ dφ . (26)

Re-writing (26) as

PDH = RaPr
r2o
d2

∫
1
r2

[∫∫
T urr2 sin θ dθ dφ

]
dr , (27)

allows to inject the expression (23) of the Nusselt number, which leads to

PDH = RaPr
r2o
d2

∫
1
r2

[
ε−2(Nu − 1) +

∫∫
∂θ

∂r
r2 sin θ dθ dφ

]
dr . (28)
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The second term vanishes because of the boundary conditions, and we finally obtain

PDH =
(
Pr
E

)3 4π(
1 − χ

)2 Ra�
Q . (29)

As expected, in the limit of a thin layer (χ → 1), this result tends to the cartesian result
(25), since

ε2

[(
Pr
E

)3 4π(
1 − χ

)2 Ra�
Q

]
−→
χ→1

(
Pr
E

)3
Ra�

Q . (30)

The conclusions at this stage are that, for differential heating, there is an exact linear
relation between the injected power and the Ra�

Q parameter in the cartesian geometry, just
like in the spherical geometry with a gravity profile proportional to 1/r2 (see also Gastine
et al. 2015, for this last configuration). The proportionality factor however depends on the
geometry.

Let us now focus on the geometry studied in Christensen and Aubert (2006), that is to
say the spherical geometry with a linear radial profile of gravity. Here we aim at calculating
the relation between the injected power and Ra�

Q without any approximation. In this
configuration, the convective power (12a) can be rewritten as

PDH = RaPr
d
ro

∫∫∫
T er·u r3 dr sin θ dθ dφ . (31)

Using expression (23) for the Nusselt number yields

PDH = RaPr
d
ro

∫
r
[
ε−2(Nu − 1) +

∫∫
∂θ

∂r
r2 sin θ dθ dφ

]
dr , (32)

which can be re-expressed as

PDH = 2πχ
1 + χ(
1 − χ

)2
(
Pr
E

)3
Ra�

Q + RaPr
(
1 − χ

) ∫∫∫
r3

∂θ

∂r
dr sin θ dθ dφ . (33)

Contrary to what happens in the cartesian geometry and in the spherical geometry with
g ∼ r−2, the second term here involves an r3 factor. This term therefore does not vanish.
An integration by part leads to

PDH = 2πχ
1 + χ(
1 − χ

)2
(
Pr
E

)3
Ra�

Q − 3RaPr
(
1 − χ

) ∫∫∫
θr2 dr sin θ dθ dφ , (34)

and that provides, after some rearrangements,

PDH =
(
Pr
E

)3
Ra�

Q

[
2πχ

1 + χ(
1 − χ

)2 − 3
(
1 − χ

)
V

θ

Nu − 1

]
, (35)
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where the overbar indicates the mean over the volume of the shell, denoted as V . In the
dimensional form, this yields

P�DH = (
ρΩ3d5

)
Ra�

Q

[
2πχ

1 + χ(
1 − χ

)2 − 3
(
1 − χ

)
V

θ

Nu − 1

]
. (36)

In this case, the relation between the injected power and Ra�
Q is not purely linear. Relation

(35) indeed exhibits an additional term in the square brackets, which corresponds to the
relative correction from the linear relation between P and Ra�

Q. It is proportional to the
mean temperature perturbation over the shell, and stems from the assumption of a uniform
distribution of mass in the spherical geometry. An estimation of this term can be made
by estimating θ . We assume that in the boundary layers, the heat is purely transported by
conduction. This hypothesis is combined to the assumption that the fluid is isothermal in
the bulk (which is all the more verified that the convection is vigorous). The temperature
in the bulk is denoted as Tm, and corresponds to the mean temperature over the shell T ,
under the hypothesis of thin boundary layers. This yields

( ri
d

)2 Ti − Tm

δi
�

( ro
d

)2 Tm − To

δo
, (37)

where δi and δo correspond to the thickness of the inner and outer boundary layers,
respectively.A crude approach consists in assuming that the boundary layers are symmetric
(i.e. δi = δo). The choice Ti = 1 and To = 0 leads to Tm

(a) = χ2/(1+χ2), which logically
tends to 1/2 as χ tends to unity. In the literature of convection in spherical geometry,
alternative physical assumptions have been proposed to close the system (37) (e.g. Gastine
et al. 2015). The assumption that thermal boundary layers are marginally stable (Vangelov
and Jarvis 1994) provides, in this configuration, a value of the mean temperature in the
bulk of Tm

(b) = χ7/4/(1 + χ7/4). The proposition by Wu and Libchaber (1991) that the
thermal boundary layers adapt their temperature drops and their thicknesses such that
their temperature scales νκ/(gαδ3) are equal yields Tm

(c) = χ7/3/(1+χ7/3). Finally, very
recently, Gastine et al. (2015) proposes that the inner and outer boundary layers exhibit the
samedensity of plumes,which leads toTm

(d) = χ11/6/(1+χ11/6). These four estimates can
be tested against the numerical database provided byU. Christensen, which corresponds to
convective dynamos driven by differential heating and a linear radial profile of gravity. The
aspect ratio is χ = 0.35, which provides the estimates Tm

(a) � 0.1091, Tm
(b) � 0.1374,

Tm
(c) � 0.0795 and Tm

(d) � 0.1273. Figure 1 shows the mean temperature in the shell
as a function of the Rayleigh number, normalized by the critical Rayleigh number at the
threshold of convection. Dynamos exhibiting a dipolar magnetic field are distinguished
from multipolar dynamos. We observe that the mean temperature tends to a constant
value, as the Rayleigh number increases. Both estimates Tm

(a) and Tm
(d) are remarkably

well met by the multipolar dynamos associated to the most vigorous convection. We can
notice that the simplest hypothesis (symmetric boundary layers) provides a very good
agreement to the numerical database, which is not significantly improved by considering
more elaborate assumptions.
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Figure 1. Representation of the mean temperature T as a function of the Rayleigh number, normalized
by the critical Rayleigh number at the threshold of convection. Points correspond to the full 184
dynamos database of U. Christensen. Bullets correspond to dipolar dynamos, circles to multipolar ones.
Lines correspond to estimations of T : Tm

(a) (solid black), Tm
(b) (dotted gray), Tm

(c) (dashed gray) and
Tm

(d) (solid gray).

Let us note that replacing T by the estimated value Tm
(a), and Ts by

Ts = χ
(−2χ2 + χ + 1

)
2
(
1 − χ3

) , (38)

in (35) yields

PDH =
(
Pr
E

)3
Ra�

Q

[
2πχ

1 + χ(
1 − χ

)2 + 2π f (χ)

Nu − 1

]
with f (χ) = χ(1 + χ)

(1 + χ2)
,

(39)
and that in the limit χ → 1,

ε2PDH −→
χ→1

(
Pr
E

)3
Ra�

Q , (40)

which is consistent with the expression (25) derived in the cartesian geometry.
Figure 2 allows to test relation (35). It represents the relative correction term in (35), in

the form
PDH − 2πχ(1 + χ)(1 − χ)−2Ra�

Q

Ra�
Q

and
−3

(
1 − χ

)
V

θ

Nu − 1
,

using the present numerical database (PDH is here in units ρΩ3d5). The good agreement
between both parts validates relation (35).
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Figure 2. Representation of the relative correction term in (35), in the form
[
PDH − 2πχ(1 + χ)(1 −

χ)−2Ra�
Q
]/

Ra�
Q (gray bullets) and −3

(
1 − χ

)
Vθ

(
Nu − 1

)−1 (black crosses) as a function of the
Nusselt number Nu, using the numerical database provided by U. Christensen (PDH is here in units
ρΩ3d5). The dashed line corresponds to the analytic function f (Nu) = −3

(
1 − χ

)
V(Tm

(a) −
Ts)

(
Nu − 1

)−1; as expected, data tend asymptotically to this function for vigorous enough convection.
This figure validates relation (35).

The first term on the right-hand side of (36) corresponds to the expression derived by
Christensen and Aubert (2006). The second term, that we have just further investigated
above, has been neglected in their study. This is equivalent to neglecting the contribution
of the gradient of the temperature perturbation in the conductive heat flow (19a), com-
pared to the gradient of the purely conductive profile Ts. Such an approximation is of
course very sensible near the threshold of convection. At the threshold, this term indeed
vanishes. In order to ponder on its reliability as convection becomes more vigorous, we
represented in figure 3 the three terms of (36) in the form PDH (in units ρΩ3d5, gray
bullets), 2πχ(1 + χ)(1 − χ)−2Ra�

Q (black crosses) and the absolute correction term
−3

(
1 − χ

)
Vθ

(
Nu − 1

)−1 Ra�
Q (black circles), as a function of the flux-based Rayleigh

number. The first panel corresponds to a log–log representation (as in Christensen and
Aubert 2006), whereas the second one is linear. The figure based on logarithmic scales
shows how the approximation consisting in neglecting the second term on the right-hand-
side of (36) is sensible for the present database. Nevertheless, the linear representation
indicates that in the numerical database, as the Ra�

Q parameter becomes larger, this term
increases. In planets and stars, however, Ra�

Q 	 1 andNu � 1. For example, in the Earth’s
core, Ra�

Q ∼ 10−13 and the Nusselt number based on the superadiabatic temperature
gradient is about 106 (e.g. Christensen and Aubert 2006, Olson and Christensen 2006).
This yields a negligible absolute correction term. The absolute correction term is also
small in most existing numerical dynamos, with Ra�

Q ∈ [10−8, 1] and Nu ∈ [1, 32]. The
limit of the linear relation between the injected power and Ra�

Q in this configuration,
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(a) (b)

Figure 3. The three terms of (36) in the form PDH (in units ρΩ3d5, gray bullets), 2πχ(1 + χ)(1 −
χ)−2Ra�

Q (black crosses) and the absolute correction term −3
(
1 − χ

)
Vθ

(
Nu − 1

)−1 Ra�
Q (black

circles), as a function of the flux-based Rayleigh number, using the numerical database provided by U.
Christensen. Panel (a) corresponds to a log–log representation, and panel (b) to a linear one.

however, should not be ignored by numericists. Rewriting the absolute correction term as
−3

(
1 − χ

)
V θ Ra E3/Pr2 using (9) reveals that trying to increase Nu (which is underes-

timated by a factor ∼ 105 in existing simulations) through an increase of Ra at fixed E,
will necessarily yield an increase of the correction term. However, as E can be decreased
(with increasing computational resources), the Rayleigh number will have to increase as
Rac ∼ E−4/3. For fixed super-criticality, the correction term will thus scale as E5/3. Thus
an increase in Ra/Rac can be achieved, while the correction term remains small. This is
necessary to achieve a limit relevant to planetary cores.

This restriction neither exists in the spherical geometry with g proportional to 1/r2,
nor in the cartesian geometry. As the original power-based scaling law for the magnetic
field strengthmainly reflects the statistical balance between injected power and dissipation
(Oruba and Dormy 2014), our results allow to understand why the scaling law which
relates the magnetic field strength to Ra�

Q derived by Christensen and Aubert (2006) in the
spherical geometry with g ∼ r is also verified in the planar convective-driven dynamos
studied byTilgner (2014) (see figure 1a therein). Besides, this highlighting of the role played
by the gravity profile in the expression of the injected power corroborates the observation
made by Raynaud et al. (2014) that the mass distribution has a strong influence on the
fluid flow and thus on the dynamo generated magnetic field.

3.3. Fixed-flux at the CMB

We focus here on a configuration where the temperature is fixed at the inner boundary
(ICB), which would correspond to the solidification temperature of iron at the pressure
of the ICB, and the heat flux is fixed at the outer boundary (CMB), which is equivalent to
considering that the mantle controls the heat flux out of the core.

The imposed heat flow Q� is carried by the background temperature profile Ts. As a
consequence, the Nusselt number reduces to Nu = 1/�T , and the confrontation of the
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expressions of Q�
c
FF and Q�

a
FF in the cartesian geometry (see (14b) and (15b)) leads to∫∫

∂θ

∂z
dx dy =

∫∫
T uz dx dy , (41)

and (19b) and (21b) provide, in the spherical geometry,∫∫
∂θ

∂r
r2 sin θ dθ dφ =

∫∫
T urr2 sin θ dθ dφ . (42)

In the cartesian geometry, (41) allows to rewrite the injected power (12b) as

PFF = RaΦPr
∫ [∫∫

∂θ

∂z
dx dy

]
dz , (43)

and replacing θ by T − Ts provides

PFF = RaΦPrε−2 (−�T + 1
)
, (44)

which can be rewritten as

PFF =
(
Pr
E

)3
Ra�

Qε−2 . (45)

This expression is thus identical to (25), derived in the differential heating configuration.
In the spherical geometry with g ∼ r−2, (42) allows to rewrite the injected power (27)

as

PFF = RaΦPr
1(

1 − χ
)2

∫∫∫
∂θ

∂r
dr sin θ dθ dφ . (46)

Introducing the notation 〈· · · 〉 = 1/(4π)
∫∫ · · · sin θ dθ dφ yields

PFF = 4πRaΦPr
1(

1 − χ
)2 (〈θ〉o − 〈θ〉i

)
, (47)

and replacing 〈θ〉 by 〈T〉 − Ts leads to

PFF = 4πRaΦPr
1

(1 − χ)2

(−�T + 1
)

. (48)

We finally obtain

PFF =
(
Pr
E

)3 4π(
1 − χ

)2 Ra�
Q . (49)

At this stage, the expressions (45) and (49) obtained for fixed-flux heating are thus the
same as those derived in the differential heating configuration (see (25) and (29)).

In the spherical geometry with g ∼ r, using (42) allows to rewrite the injected power
(12b) as

PFF = RaΦPr
d
ro

∫∫∫
∂θ

∂r
r3 dr sin θ dθ dφ , (50)
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which becomes, after an integration by part

PFF = 4πRaΦPr
d
ro

[[
〈θ〉r3

]ro/d
ri/d

− 3
∫

r2〈θ〉 dr
]

. (51)

As the temperature at the inner boundary is imposed (θi = 0), we obtain

PFF = 4πRaΦPr
d
ro

[ 〈θ〉o
(1 − χ)3

− 3
∫

r2〈θ〉 dr
]
, (52)

and replacing 〈θ〉o by 〈T〉o − 〈T〉i + Ti − To yields

PFF = 4πRaΦPr
d
ro

[
1

(1 − χ)3

(−�T + 1
) − 3

∫
r2〈θ〉 dr

]
, (53)

and finally

PFF =
(
Pr
E

)3
Ra�

Q

[
4π(

1 − χ
)2 − 3(1 − χ)V

Nu
Nu − 1

θ

]
. (54)

It is interesting to note that as for differential heating, this geometry exhibits a supple-
mentary term involving the mean perturbation temperature. The correction terms in (35)
and (54) differ through a Nu factor, which corresponds to the ratio of the two factors in
(12a,b). In the limit of vigorous convection, θ

DH is O(1) whereas θ
FF is approximately

proportional to 1/Nu. The correction terms in (35) and (54) thus tend to a unique
expression, which is consistent with the idea that when convection is very vigorous, the
effect of different thermal boundary conditions vanishes (e.g. Johnston andDoering 2009).
The same restriction for the linear relation between the injected power and the flux-based
Rayleigh number thus also applies to the fixed-flux configuration.

3.4. Chemical convectionwith fixed flux at the ICB

The most general cases can involve internal volumetric sources or sinks of energy. Let
us focus on the configuration of an imposed uniform heat flux Q�

i at the ICB, zero flux
at the CMB and homogeneous volumetric sinks (to mimic chemical convection with
fixed flux at the ICB, as introduced in Kutzner and Christensen 2002). The sink term
provides a modification of the conductive temperature profile Ts, so that the heat equation
(3) remains unchanged. In this case, the unit of temperature C ε2Q�

i /(κρcd), with C =
(2 + χ)/(2(1 + χ + χ2)) a geometric factor, is chosen such that �Ts = 1. This yields

Ts = χ

2 + χ

[ −3
(1 − χ)2

+ r2 + 2
r(1 − χ)3

]
, (55)

where Ts(ri/d) has been set to unity. As the time-averaged total heat flowQ� here depends
on radius, the Nusselt number defined in (7) also depends on radius. We therefore define
a reference Nusselt number Nu† as

Nu† = �T�
s

�T�
= 1

�T
. (56)
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Now, introducing

Ra†Φ = αgε2CQ�
i d

2

ρcνκ2 , (57)

yields Nu† = Ra†Φ/Ra. Note that as χ tends to unity, C tends to 1/2. In this limit, the
comparison of RaΦ and Ra†Φ relies on the substitution of the time-averaged total heat flow
Q� (which is a constant in the absence of energy sink) by its volume average (equal to
Q�
i /2) in the presence of energy sink. Because of the homogeneous Neumann boundary

conditions, the temperature perturbation is defined up to an arbitrary constant. If this
constant is chosen such that 〈θ〉i = 0, the expressions (49) and (54) for the injected power,
derived in the configuration of fixed-flux heating with no volumetric source, are recovered
in the presence of a sink of energy, provided RaQ� is replaced by

(Ra†Φ − Ra)
E3

Pr2
= αgκ

(
�Ts

� − �T�
)

Ω3d3
. (58)

The conclusions are thus identical to those derived in the case of no internal energy
sources/sinks.

4. Conclusions

In this paper, we first focused on the Ra�
Q parameter which plays an essential role in

the power-based scaling laws in dynamo. We highlighted that for vigorous enough con-
vection (i.e. Nu � 1), the Ra�

Q parameter tends to a combination of parameters which
are controlled in the case of fixed-heat flux. However sensible for natural objects, this
approximation is not straightforward for numerical dynamos in present databases. This
clarifies the contradictions in the literature concerning the nature (controlled vs.measured)
of this parameter in convective dynamos driven by a fixed-heat flux.

In a second part, we investigated the issue of the robustness of the original relation
between the powerP injected by buoyancy forces and theRa�

Q parameterwith the geometry
and the thermal heating mechanism. This is an important question since this robustness
is mandatory for the extrapolations of the original power-based scaling laws to other
configurations to be relevant. We have shown analytically that in the cartesian geometry
as in the spherical geometry exhibiting a radial profile of gravity of the form 1/r2, for
both differential and fixed-flux heating, the linear relation between the injected power
and Ra�

Q is robust. Only the proportionality factor is modified by the geometry. The
spherical geometry with a linear radial profile of gravity is however more complicated,
since the relation between P and Ra�

Q involves an additional term proportional to themean
perturbation temperature. In the differential heating configuration, we have highlighted
and pondered on this term by using a numerical database of dynamos.We have shown that
it could be estimated in the limit of vigorous convection through simple assumptions. We
have also stressed that the linear approximation between P and Ra�

Q is relevant to natural
dynamos and in most existing numerical dynamos.

Its validity however places an upper-bound on the strength of the driving which can
be envisaged in a fixed Ekman number simulation. An increase of the Rayleigh number
indeed yields deviations (in terms of absolute correction) from the linear relation between
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P and Ra�
Q. The effect of the heating mode on the relation between P and Ra�

Q is found to
be small.

To summarize, in convective dynamos driven by a fixed-heat flux, the Ra�
Q parameter

becomes controlled provided the Nusselt number is large enough (Nu � 1). However, in
the geometry commonly studied by geophysicists (spherical with uniform mass distribu-
tion), an increase of the Rayleigh number in numerical simulations at fixed Ekman number
would yield a deviation of P from Ra�

Q. The parameter range for which the power injected
by buoyancy forces is controlled is thus limited. In the quest for predictive scaling laws,
an alternative approach to power-based scaling laws consists in expressing forces balances
based on the distance to the onset of dynamo action (see Petrelis and Fauve 2001, Oruba
and Dormy 2014).
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