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Eye formation in rotating convection
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We consider rotating convection in a shallow, cylindrical domain. We examine the
conditions under which the resulting vortex develops an eye at its core; that is,
a region where the poloidal flow reverses and the angular momentum is low. For
simplicity, we restrict ourselves to steady, axisymmetric flows in a Boussinesq fluid.
Our numerical experiments show that, in such systems, an eye forms as a passive
response to the development of a so-called eyewall, a conical annulus of intense,
negative azimuthal vorticity that can form near the axis and separates the eye from
the primary vortex. We also observe that the vorticity in the eyewall comes from the
lower boundary layer, and relies on the fact the poloidal flow strips negative vorticity
out of the boundary layer and carries it up into the fluid above as it turns upward
near the axis. This process is effective only if the Reynolds number is sufficiently
high for the advection of vorticity to dominate over diffusion. Finally we observe
that, in the vicinity of the eye and the eyewall, the buoyancy and Coriolis forces
are negligible, and so although these forces are crucial to driving and shaping the
primary vortex, they play no direct role in eye formation in a Boussinesq fluid.
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1. Introduction

One of the most striking features of atmospheric vortices, such as tropical cyclones,
is that they often develop a so-called eye; a region of reversed flow in and around
the axis of the vortex. Much has been written about eye formation, particularly
in the context of tropical cyclones, but the key dynamical processes are still
poorly understood (Pearce 2005a,b; Smith 2005). Naturally occurring vortices in
the atmosphere are, of course, complicated objects, whose overall dynamics can
be strongly influenced by, for example, planetary rotation, stratification, latent heat
release through moist convection and turbulent diffusion. Indeed the structure of eyes
in tropical cyclones is almost certainly heavily influenced by both moist convection
and stratification. However, the ubiquitous appearance of eyes embedded within
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FIGURE 1. (Colour online) Cartoon showing the global flow pattern in rotating convection.
The motion in the vertical plane consists of the primary vortex, the eyewall and the eye,
while the azimuthal motion consists of regions of high angular momentum near the axis
and low (or even negative) angular momentum at larger radii (the vertical axis is stretched
by a coefficient of 5 for readability).

large-scale vortices suggests that the underlying mechanism by which they first
form may be independent (partially if not wholly) of such complexities. Indeed
eye-like structures are observed in other atmospheric vortices such as tornadoes (Lugt
1983, and references therein) or polar lows (Rasmussen & Turner 2003), which are
particularly interesting as they consist of large-scale convective cyclonic structures
observed in high latitude polar regions. To put the idea of a simple hydrodynamic
mechanism to the test we consider what is, perhaps, the simplest system in which
eyes may form; that of steady axisymmetric convection in a rotating Boussinesq fluid.
We thus neglect the effects of stratification, and of moist convection. Our underlying
assumption is that some atmospheric phenomena could be simple enough to be
modelled in a uniform Boussinesq fluid. Indeed, a recent study by Guervilly, Hughes
& Jones (2014) noted that Boussinesq convection can yield, as in the atmosphere, the
formation of large-scale cyclonic vortices.

In this work, we consider a rotating, cylindrical domain in which the lower surface
is a no-slip boundary, the upper surface stress free and the motion driven by a
prescribed vertical flux of heat. In a frame of reference rotating with the lower
boundary, the Coriolis force induces swirl in the convecting fluid, which in turn sets
up an Ekman-like, or Bödewadt, boundary layer on the lower surface. The primary
flow in the vertical plane is then radially inward near the lower boundary and outward
at the upper surface. As the fluid spirals inward, it carries its angular momentum
with it (subject to some viscous diffusion) and this results in a region of particularly
intense swirl near the axis. The overall flow pattern is as shown schematically in
figure 1.

In the vertical plane the primary vortex has a clockwise motion, and so has
positive azimuthal vorticity. If an eye forms, however, its motion is anticlockwise in
the vertical plane (figure 1), and so the eye is associated with negative azimuthal
vorticity. A key question, therefore, is: where does this negative vorticity come from?
We shall show that it is not generated by buoyancy, since such forces are locally
too weak. Nor does it arise from so-called vortex tilting, despite the local dominance
of this process, because vortex tilting cannot produce any net azimuthal vorticity.
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FIGURE 2. Flow domain and boundary conditions.

Rather, the eye acquires its vorticity from the surrounding fluid by cross-stream
diffusion, and this observation holds the key to eye formation in our simple system.

The region that separates the eye from the primary vortex is usually called the
eyewall, and we shall see that this thin annular region is filled with intense negative
azimuthal vorticity. So eye formation in our model problem is really all about the
dynamics of creating an eyewall. In this paper we use numerical experiments to
investigate the processes by which eyes and eyewalls form in our model system. We
identify the key dynamical mechanisms and force balances, and provide a simple
criterion which needs to be met for an eye to form.

2. Problem specification and governing equations

We consider the steady flow of a Boussinesq fluid in a rotating, cylindrical domain
of height H and radius R, with R�H. The aspect ratio is denoted as ε=H/R. The
flow is described in cylindrical polar coordinates, (r, φ, z), where the lower surface,
z= 0, and the outer radius, r=R, are no-slip boundaries. The upper surface, z=H, is
impermeable but stress free. The motion is driven by buoyancy with a fixed upward
heat flux maintained between the surfaces z= 0 and z=H. In static equilibrium there
is a uniform temperature gradient, dT0/dz=−β. We decompose T = T0(z)+ θ , where
θ is the perturbation in temperature from the linear profile. In order to maintain a
constant heat flux the thermal boundary conditions on the surfaces z= 0 and z=H are
∂θ/∂z=0, while the outer radial boundary is thermally insulating, ∂θ/∂r=0. The flow
domain and boundary conditions are summarised in figure 2. Regularity conditions are
imposed at r= 0.

We adopt a frame of reference that rotates with the boundaries. Denoting Ω the
background rotation rate, g the gravitational acceleration, ν the kinematic viscosity
of the fluid, κ its thermal diffusivity and α its thermal expansion coefficient, the
governing equations are

Du
Dt
=− 1

ρ0
∇p− 2Ω × u+ ν ∇2u− αθ g, ∇ · u= 0, (2.1a,b)

and
Dθ
Dt
= κ∇2θ + βuz (2.1c)

(e.g. Chandrasekhar 1981; Drazin 2002). We further restrict ourselves to axisymmetric
motion, so that we may decompose the velocity field into poloidal and azimuthal
velocity components, up = (ur, 0, uz) and uφ = (0, uφ, 0), which are separately
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Eye formation in rotating convection 893

solenoidal. The azimuthal component of (2.1a) then becomes an evolution equation
for the specific angular momentum in the rotating frame, Γ = ruφ ,

DΓ
Dt
=−2rΩur + ν∇2

? (Γ ), (2.2)

where

∇2
? = r

∂

∂r

(
1
r
∂

∂r

)
+ ∂2

∂z2
(2.3)

is the Stokes operator. Moreover the curl of the poloidal components yields an
evolution equation for the azimuthal vorticity, ωφ =∇× up,

D
Dt

(ωφ
r

)
= ∂

∂z

(
Γ 2

r4

)
+ 2Ω

r
∂uφ
∂z
− αg

r
∂θ

∂r
+ ν

r2
∇2
? (rωφ). (2.4)

We recognise the curl of the Coriolis, buoyancy and viscous forces on the right of
(2.4). The axial gradient in Γ 2/r4 is, perhaps, a little less familiar as a source of
azimuthal vorticity. However, this arises from the contribution of ∇× (uφ×ωp), where
ωp = ω − ωφ, to the vorticity equation and represents the self-advection (spiralling
up) of the poloidal vorticity lines by axial gradients in swirl (e.g. Davidson 2013).
The scalar equations (2.2) and (2.4) are formally equivalent to (2.1a), with Γ and ωφ
uniquely determining the instantaneous velocity distribution. Finally, it is convenient
to introduce the Stokes streamfunction, ψ , which is defined by up =∇ ×

[
(ψ/r) eφ

]
and related to the azimuthal vorticity by rωφ =−∇2

?ψ .

3. Global dynamics
We numerically solve equations (2.1c), (2.2) and (2.4) in the form of an initial

value problem which is integrated until a steady solution is reached. In the parameters
regime reported here, these steady solutions are thus stable. Although we also found
oscillatory solutions, these are not discussed in this paper. The length has been scaled
with the height H of the system, the time with Ω−1 and the temperature with Hβ. The
dimensionless control parameters of the system are the Ekman number E = ν/ΩH2,
the Prandtl number Pr= ν/κ and the Rayleigh number Ra= αgβH4/νκ .

We use second-order finite differences and an implicit second-order backward
differentiation in time. The number of radial and axial cells is 1000 × 500, and
in each simulation grid resolution studies were undertaken to ensure numerical
convergence. The aspect ratio of the computational domain is set at ε = 0.1, a ratio
inspired by tropical storms (for which H ' 10 km and R ' 100 km). The Ekman
number E is set to 0.1, which is a sensible turbulent estimate for tropical cyclones.
The values of Pr and Ra will be varied through this study to control the strength of
the convection.

We shall consider flows in which the local Rossby number Ro= |uφ|/ΩH, is of the
order unity or less at large radius, r ' L, but is large near the axis, r 'H, which is
not untypical of a tropical cyclone and turns out to be the regime in which an eye
and eyewall form in our numerical simulations. We shall also take a suitably defined
Reynolds number, Re, to be considerably larger than unity, though not so large that
the laminar flow becomes unsteady. A moderately large Reynolds number also turns
out to be crucial to eye formation.

In order to focus thoughts, let us start by considering two specific cases:
Pr= 0.5, Ra= 1.5× 104 and Pr= 0.1 , Ra= 2× 104. These two cases are represented
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FIGURE 3. (Colour online) Steady state solution in the (r, z)-plane for the parameters
Pr=0.5 and Ra=1.5×104 in (a–d), and for Pr=0.1 and Ra=2×104 in (e–h). (a,e) The
streamfunction distribution, (b,f ) the total temperature T = T0(z)+ θ , (c,g) the azimuthal
velocity, uφ , (d,h) the radial variation of Ro.

in figure 3. In both cases, the primary flow in the vertical plane is radially inward near
the lower boundary and outward at the upper surface. The steady state streamfunction
distributions are shown in figure 3(a,e). It is evident that in both cases an eye has
formed near the axis, but it is much more pronounced in the latter case. Figure 3(b,f )
shows the corresponding distributions of total temperature. The poloidal flow sweeps
heat towards axis at low values of z, causing a build-up of heat near the axis with
a corresponding cooler region at larger radii. The resulting negative radial gradient
in T drives the main poloidal vortex, ensuring that it has positive azimuthal vorticity
in accordance with (2.4). Figure 3(c,g) presents the distributions of the azimuthal
velocity. The Coriolis force induces swirl in the convecting fluid. As the fluid spirals
inward, it carries its angular momentum with it (subject to some viscous diffusion)
and this results in a region of particularly intense swirl near the axis. It also shows a
substantial region of negative (anticyclonic rotation) at large radius, something that is
also observed in tropical cyclones (e.g. Frank 1977). In order to quantify the strength
of the azimuthal flow, we introduce a Rossby number which is a function of radius
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Eye formation in rotating convection 895

Ro(r) = |uφ|max/ΩH, where |uφ|max is the maximum of the absolute value of the
azimuthal velocity at any one radial location. The Rossby number as a function of
radius is represented in figure 3(d,h). The eye is obtained when the local Rossby
number, is of the order unity at large radius, r' L, but is large near the axis, r'H.
Given the increase of Ro near the axis, the Coriolis force can be neglected in the
vicinity of the eye. Note that, in the second case (figure 3e–h), the Rossby number is
much larger, and the eye much more pronounced than in the first case (figure 3a–d).

To summarise, in both cases, the buoyancy force evidently drives motion in the
poloidal plane, which in turn induces spatial variations in angular momentum, Γ ,
through the Coriolis force, 2Ωrur, in (2.2). The flow spirals radially inward along
the lower boundary and outward near z=H, as shown in figure 1. The Coriolis force
then ensures that the angular momentum, Γ , rises as the fluid spirals inward along
the bottom boundary, but falls as it spirals back out along the upper surface towards
r = L. The swirl of the flow as it approaches the axis is thus controlled both by
the Ekman number and by the aspect ratio of the domain. With our choice of the
parameters, particularly high levels of azimuthal velocity built up near the axis, with
a correspondingly large value of Ro in the vicinity of the eyewall. In some sense,
then, the global flow pattern is both established and shaped by the buoyancy and
Coriolis forces, yet, as we shall discuss, these forces are negligible in the vicinity of
the eye.

4. Global versus local dynamics
4.1. The anatomy of eyewall formation

The large value of Ro near the axis means that the Coriolis force is locally negligible
in the region where the eye and eyewall form, and it turns out that this is true also of
the buoyancy force in our Boussinesq simulations. Thus the very forces that establish
the global flow pattern play no significant role in the local dynamics of the eye. It is
worth considering, therefore, the simplified version of (2.2) and (2.4) which operate
near the axis,

DΓ
Dt
' ν∇2

? (Γ ), (4.1)

and
D
Dt

(ωφ
r

)
' ∂

∂z

(
Γ 2

r4

)
+ ν

r2
∇2
? (rωφ). (4.2)

The eye is characterised by anticlockwise motion in the (r, z)-plane (ωφ < 0), in
contrast to the global vortex that is clockwise (ωφ > 0). It is also characterised by
low levels of angular momentum. A natural question to ask, therefore, is where
this negative azimuthal vorticity comes from. Since Γ is small in the eye, ωφ/r is
locally governed by a simple advection diffusion equation in which the source term
is negligible, and so the negative azimuthal vorticity in the eye has most probably
diffused into the eye from the eyewall. This kind of slow cross-stream diffusion of
vorticity into a region of closed streamlines is familiar from the Prandtl–Batchelor
theorem (Batchelor 1956), and in this sense the eye is a passive response to the
accumulation of negative ωφ in the eyewall. If this is substantially true, and we shall
see that it is, then the key to eye formation is the generation of significant levels of
negative azimuthal vorticity in the eyewall, and so the central questions we seek to
answer is how, and under what conditions, the eyewall acquires this negative vorticity.

Given that the Reynolds number is large, it is tempting to consider the inviscid limit
and attribute the growth of negative ωφ to the first term on the right of (4.2). That is,
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axial gradients in Γ can act as a local source of azimuthal vorticity, and indeed this
mechanism has been invoked by previous authors in the context of tropical cyclones
(e.g. Pearce 2005a,b; Smith 2005). The idea is that, in steady state, if viscous diffusion
is ignored in the vicinity of the eyewall, equations (4.1) and (4.2) locally reduce to

Γ = Γ (ψ), (4.3)

and

u · ∇(ωφ/r)= ∂

∂z

(
Γ 2

r4

)
=−2

Γ Γ ′(ψ)
r3

ur. (4.4)

To the extent the viscosity can be ignored, Γ (ψ) increases to a maximum at roughly
mid-height, where ψ is a maximum, and then drops off as we approach the upper
boundary. Thus Γ ′(ψ) > 0, and so according to (4.4) positive vorticity is induced as
the streamlines curve inward and upward, while negative vorticity is created after the
streamlines turn around and ur reverses sign. Since the eyewall is associated with the
upper region, where the flow is outward, it is natural to suppose that the negative
vorticity in the eyewall arises from precisely this process. However, in the case of a
Boussinesq fluid, this term cannot produce any net negative azimuthal vorticity in the
eyewall, essentially because the term on the right of (4.4) is a divergence. To see why
this is so, we rewrite (4.4) as

∇ ·
[
(ωφ/r)u

]=∇ · [(Γ 2/r4
)

ez
]
, (4.5)

and integrate this over a control volume in the form of a stream-tube in the (r, z)-plane
composed of two adjacent streamlines that pass through the eyewall. If the stream-tube
within the control volume starts and ends at a fixed radius somewhat removed from
the eyewall, then the right-hand divergence integrates to zero. The flux of vorticity into
the control volume (the stream-tube) is therefore the same as that leaving. In short,
the azimuthal vorticity generated in the lower regions where the streamlines curve
inward and upward is exactly counterbalanced by the generation of negative vorticity
in the upper regions where the flow is radially outward. Such a process cannot result
in any negative azimuthal vorticity in the eyewall. Returning to (4.2) we conclude that
the only possible source of net negative vorticity in the eyewall is the viscous term,
and this drives us to the hypothesis that the negative vorticity in the eyewall has its
origins in the lower boundary layer. That is, negative azimuthal vorticity is generated
at the lower boundary and then advected up into eyewall where it subsequently acts
as the source for a slow cross-stream diffusion of negative vorticity into the eye. Of
course, as the streamlines pass up into, and then through, the eyewall there is also a
generation of first positive and then negative azimuthal vorticity by the axial gradients
in Γ 2/r4, but these two contributions exactly cancel, and so cannot contribute to the
negative vorticity in the eyewall.

The above description is put to the test in figures 4–7. A more detailed view of
the angular momentum distribution and streamlines in the region adjacent to the
eye and eyewall is provided in figure 4. In the region to the right of the eye, the
contours of constant angular momentum are roughly aligned with the streamlines, in
accordance with (4.3). Note that, although the contours of constant Γ roughly follow
the streamlines, the two sets of contours are not entirely aligned. This is mostly a
result of cross-stream diffusion, particularly near the eyewall, although it also partially
arises from the (relatively weak) Coriolis force.

Figure 5 shows the distribution and relative magnitudes of the various terms
in the azimuthal vorticity equation across the inner part of the flow domain. The
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FIGURE 4. (Colour online) Contours of constant angular momentum (colour)
superimposed on the streamlines (black) in the inner quarter of the flow domain
((r, z)-plane), for Pr= 0.1 and Ra= 2× 104.
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FIGURE 5. (Colour online) Colour maps of the distribution of the various terms in the
azimuthal vorticity equation (2.4) in the inner part of the flow domain ((r, z)-plane):
(a) the convective derivative of azimuthal vorticity; (b) the term associated with axial
gradients in Γ ; (c) diffusion; (d) the Coriolis term; and (e) buoyancy. Parameters: Pr=0.1,
Ra= 2× 104.

buoyancy and Coriolis terms, though important for the large-scale dynamics, are
locally negligible (figure 5d,e), while diffusion is largely limited to the boundary
layer, the eyewall and a region near the axis where the flow turns around (figure 5c).
Note also that ∂

(
Γ 2/r4

)
/∂z is small within the eye (figure 5b) but there are intense

regions of equal and opposite ∂
(
Γ 2/r4

)
/∂z below the eyewall, which are matched by

corresponding regions of equal and opposite u · ∇(ωφ/r) in figure 5(a). These figures
appear to validate that (4.2) is the relevant equation in this domain. It is interesting
that the very forces that shape the global flow, i.e. the Coriolis and buoyancy forces,
play no role in the vicinity of the eye.
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FIGURE 6. (Colour online) The variation of the terms in the azimuthal vorticity equation
(2.4) with position on the streamline that passes through the centre of the eyewall. The
convective derivative on the left-hand side of (2.4) is black, the term associated with axial
gradients in Γ is red, the viscous term is green and the Coriolis and buoyancy terms (blue
and light blue) are indistinguishable from the x-axis. Parameters: Pr= 0.1, Ra= 2× 104.
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FIGURE 7. (Colour online) (a) Colour map of ωφ/r superimposed on the streamlines
in the inner quarter of the domain ((r, z)-plane). (b) The variation of ωφ/r along the
streamline that passes through the centre of the eyewall (as indicated by the thick black
line in (a). Parameters: Pr= 0.1 , Ra= 2× 104.

This can be further highlighted by introducing the variable τ , defined as a
parametric coordinate along an iso-ψ . It corresponds to the position at a given
time τ for a particle advected along a streamline; it stems from (dz/dτ)|ψ=cst = uz.
The constant of integration is set such that τ = 0 for the maximum of ωφ/r. Figure 6
shows forces in the azimuthal vorticity equation, as a function of position on the
streamline that passes through the centre of the eyewall (thick streamline in figure 5).
To first order there is an approximate balance between the advection of ωφ/r and
∂
(
Γ 2/r4

)
/∂z, though there is a significant contribution from the diffusion of vorticity

within the eyewall. Both the Coriolis and buoyancy terms are completely negligible.
In short, the force balance is that of (4.2).

The main features of the eyewall are most clearly seen in figure 7(a), which
shows the distribution of azimuthal vorticity, ωφ/r, superimposed on the streamlines.
The exceptionally strong levels of azimuthal vorticity in and around the eyewall is
immediately apparent, and indeed it is tempting to define the eyewall as the outward
sloping region of strong negative azimuthal vorticity which separates the eye from
the primary vortex. There are two other important features of figure 7(a). First, a
large reservoir of negative azimuthal vorticity builds up in the lower boundary layer,
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The convective derivative on the left-hand side of (2.2) is black, the viscous diffusion term
is green and the Coriolis term is blue.

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

0

0.2

0.4

0.6

0.8

1.0

−100 −50 0 50 100

(a)

(c)

(b)

FIGURE 9. (Colour online) The spatial distribution of the various torques in the angular
momentum equation in the inner part of the flow domain ((r, z)-plane): (a) the convective
derivative of Γ , (b) the diffusion term on the right and (c) the Coriolis torque. Parameters:
Pr= 0.1, Ra= 2× 104.

as it must. Second, between the lower boundary and the eyewall there is a region
of intense positive azimuthal vorticity. Figure 7(b) shows the variation of ωφ/r along
the streamline that passes through the centre of the eyewall, as indicated by the thick
black line in figure 7(a). As the streamline passes along the bottom boundary layer,
ωφ/r becomes progressively more negative. There is then a sharp rise in ωφ/r as
the streamline pulls out of the boundary layer and into a region of positive ∂Γ /∂z,
followed by a corresponding drop as the streamline passes into the region of negative
∂Γ /∂z. Crucially, the rise and subsequent fall in ωφ/r caused by axial gradients in
angular momentum exactly cancel, and so the fluid emerges into the eyewall with the
same level of vorticity it had on leaving the boundary layer.

Finally we consider in figures 8 and 9 the distribution of the various contributions
to the angular momentum equation (2.2). Figure 8 shows the variation of these terms
along the streamline that passes through the centre of the eyewall, as indicated by
the thick black line in figure 5. As before, the origin for the horizontal axis is taken
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to be the innermost point on the streamline. Clearly, within the eyewall there is a
leading-order balance between the advection and diffusion of angular momentum, in
accordance with the approximate equation (4.1), although the Coriolis torque is not
entirely negligible. However, within the boundary layer ahead of the eyewall the force
balance is quite different, with the Coriolis and viscous forces being in approximate
balance, the convective growth of angular momentum being small.

A similar impression may be gained from figure 9 which shows, for the inner
quarter of the flow domain, the distribution of the various contributions to (2.2).
Figure 9(a) is the convective derivative of Γ on the left of (2.2), figure 9(b) is
the diffusion term on the right, and figure 9(c) is the Coriolis torque. Clearly, the
positive Coriolis torque acting near the bottom boundary layer is largely matched by
local cross-stream diffusion, the convective growth of angular momentum being small.
The negative Coriolis torque acting on the outflow near the upper surface is mostly
balanced by u · ∇Γ , resulting in a fall in Γ . Within the eyewall, the force balance
is quite different, since there is a leading-order balance between the advection and
diffusion of angular momentum, and the Coriolis torque is very weak. This confirms
our previous observations in figure 5, and is in accordance with the approximate
equation (4.1).

To summarise, in this particular simulation the eyewall that separates the eye from
the primary vortex is characterised by high levels of negative azimuthal vorticity.
That vorticity comes not from the term ∂(Γ 2/r4)/∂z, despite its local dominance, but
rather from the boundary layer at z= 0. The eye then acquires its negative vorticity
by cross-stream diffusion from the eyewall, in accordance with the Prandtl–Batchelor
theorem. Although the global flow is driven and shaped by the buoyancy and Coriolis
forces, these play no significant dynamical role in the vicinity of the eye and eyewall.
As we shall see, these dynamical features characterise all of our simulations that
produce eyes.

4.2. A comparison of vortices that do and do not form eyes
Let us now compare numerical simulations at given values of the Prandtl number
(Pr = 0.3 and Pr = 0.1) and varying Rayleigh numbers. Figure 10 shows the
streamfunction distribution. Clearly, eyes form in figure 10(b,c,d,f,g,h). From table 1
and figure 11, we see that the peak value of Ro is of the order of 10 or larger in
those cases where an eye forms, which is typical of an atmospheric vortex.

The clearest way to distinguish those flows where an eye forms from those in which
it does not is to examine the spatial distribution of the azimuthal vorticity, shown
in figure 10. In cases with a strong eye (figure 10d,h), the distribution of ωφ/r is
similar to that in figure 7(a), with regions of strong negative vorticity in the boundary
layer and eyewall, and a patch of intense positive vorticity below the eyewall. The
negative eyewall vorticity has its origins in the boundary layer, with the moderately
large Reynolds number allowing this vorticity to be swept up from the boundary layer
into the eyewall. Note, in particular, that the magnitude of vorticity in the eyewall is
similar to that in the boundary layer.

Turning to figure 10(b,c,f,g), which is somewhat marginal, in the sense that the
eye is small, we see that overall flow pattern is similar, but that the negative eyewall
vorticity is now relatively weak, and in particular significantly weaker than that in the
boundary layer. It seems likely that the eyewall vorticity is relatively weak because
advection has to compete with cross-stream diffusion as the poloidal flow tries to
sweep the boundary layer vorticity up in the eyewall. In short, much of the boundary
layer vorticity is lost to the surrounding fluid by diffusion before the fluid reaches
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FIGURE 10. (Colour online) Colour map of ωφ/r superimposed on the streamlines in
the inner quarter of the domain ((r, z)-plane), for Pr = 0.3 and (a) Ra = 2 × 103,
(b) Ra= 5.5× 103, (c) Ra= 6× 103, (d) Ra= 9× 103, and for Pr= 0.1 and (e) Ra= 103,
( f ) Ra= 1.7× 103, (g) Ra= 2× 103, (h) Ra= 5× 103 . The colour code is the same on
all graphs.

the eyewall. Since the eye acquires its vorticity from the eyewall via cross-steam
diffusion, the relative weakness of the eyewall vorticity explains the weakness of the
resulting eye.

In figure 10(a,e), where no eye forms, no region of intense negative vorticity forms
as the poloidal flow turns and ur changes sign. Since there is still a reservoir of
negative vorticity in the boundary layer, and the basic shape of the primary vortex
is unchanged, we conclude that the Reynolds number is now too low for the flow to
effectively sweep the boundary layer vorticity up into the fluid above.

The comparison of figures 10(b) and 10( f ) reveals that decreasing the Prandtl
number yields stronger inertial effects and thus allows to sustain an eye at lower
Rayleigh numbers.

4.3. A criterion for eye formation
The mechanism introduced above works only if the Reynolds number, Re, is
sufficiently large, so that the flow can lift the vorticity out of the boundary layer
and into the eyewall before is disperses though viscous diffusion. This suggests that
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FIGURE 11. The radial variation of Ro, for the cases with Pr= 0.1 and Ra= 103 (dotted),
Ra= 2× 103 (dashed), Ra= 5× 103 (thin solid) and Ra= 2× 104 (thick solid).

there is a threshold value in Re that must be met in order for an eyewall to form.
We take this Reynolds number to be based on the maximum value of the inward
radial velocity, |ur|max, at a radial location just outside the region containing the eye
and eyewall. We (somewhat arbitrarily) choose the radial location at which |ur|max is
evaluated to be r = H, which does in fact lie just outside the eyewall. Thus Re is
defined as

Re= |ur|maxH
ν

, (4.6)

and is chosen to be larger than unity, though not so large that the flow becomes
unsteady.

The logic behind this specific definition of Re is that the poloidal velocity field
in the vicinity of the eyewall is dominated, via the Biot–Savart law, by the flux
of vorticity up through the eyewall. This, in turn, is related to the flux of negative
azimuthal vorticity in the boundary layer just outside the eyewall region. However,
evaluating this flux by integrating |ωφ| up through this boundary layer from to the
point where |ωφ| = 0 simply gives |ur|max. We conclude, therefore, that |ur|max is the
characteristic poloidal velocity in the vicinity of the eyewall, and that Re is therefore
a suitable measure of the ratio of advection to diffusion of azimuthal vorticity in this
region.

Note that, since the buoyancy and Coriolis forces are negligible in the vicinity of
the eye and eyewall, the criterion for a transition from eye formation to no eye cannot
be controlled explicitly by E or Ra, but rather must depend on Re only. So, to study
the transition in the numerical experiments, we selected values of E, Pr and Ra that
yield steady flows with moderately large Reynolds numbers, as defined by (4.6), and
with Ro somewhat larger than unity in the vicinity of the axis, i.e. those conditions
which are conducive to eye formation. The values of Re obtained from our numerical
experiments are reported in figure 12 and some are listed in table 1.

A reasonably large Reynolds number also turns out to be crucial to eye formation.
There is indeed a critical value of Re below which an eye cannot form. Figure 12(a)
shows Re as a function of Ra and Pr, with the open symbols representing cases
where an eye forms, and closed symbols those where there is no eye. There is
clear evidence that the two classes of flow are separated by a plateau in Re. This
is confirmed by the two-dimensional plots of Re versus Ra and Re versus Pr given
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Open symbols represent cases where an eye forms, and closed symbols those where there
is no eye.

in (b) and (c). For the model and parameter regime considered here, the transition
occurs at Re' 37, as indicated by the horizontal grey surface in figure 12(a) and the
corresponding lines in figure 12(b,c). Evidently, it is primarily Re, which determines
whether an eye is formed in our numerical experiments, with any dependence on Pr
being secondary. The values of Ra and Pr are significant mainly to the extent that
they partially determine Re. The role of Pr on the transition appears to be largely
related to the boundary layer size.

5. Conclusions

We considered axisymmetric steady Boussinesq convection. In the vertical plane
the primary vortex has a clockwise motion, and so has positive azimuthal vorticity.
In the elongated and rotating domain considered here, the flow is characterised by a
strong swirl as it approaches the axis. We have shown that, in this configuration, for
sufficiently vigorous flows, an eye can form. Its motion is anticlockwise in the vertical
plane, and so the eye is associated with negative azimuthal vorticity. The region that
separates the eye from the primary vortex, usually called the eyewall, is characterised
by high levels negative azimuthal vorticity. We have shown that it is not generated
by buoyancy, since such forces are locally too weak. Nor does it arise from so-called
vortex tilting, despite the local dominance of this process, because vortex tilting cannot
produce any net azimuthal vorticity. We have shown that this thin annular region is
filled with intense negative azimuthal vorticity, vorticity that has been stripped off the
lower boundary layer. So that the eye acquires its vorticity from the surrounding fluid
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by cross-stream diffusion, and this observation holds the key to eye formation in our
simple system.

The model investigated here is clearly a very simplified model of any atmospheric
vortex. Many subtle effects, such as vertical stratification, changes of phase in moist
convection or a possible anisotropy in the effective eddy viscosity have not been
investigated. These effects will undoubtedly deserve further studies. It will also
be interesting to relate, in our simplified set-up, the eye formation with control
parameters, such as the Rayleigh or the Prandtl number.
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