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We present numerical simulations of steady, laminar, axisymmetric convection of a
Boussinesq fluid in a shallow, rotating, cylindrical domain. The flow is driven by an imposed
vertical heat flux and shaped by the background rotation of the domain. The geometry is
inspired by that of tropical cyclones and the global flow pattern consists of a shallow swirling
vortex combined with a poloidal flow in the r-z plane which is predominantly inward near the
bottom boundary and outward along the upper surface. Our numerical experiments confirm
that, as suggested in our recent work [L. Oruba et al., J. Fluid Mech. 812, 890 (2017)], an eye
forms at the center of the vortex which is reminiscent of that seen in a tropical cyclone and
is characterized by a local reversal in the direction of the poloidal flow. We establish scaling
laws for the flow and map out the conditions under which an eye will, or will not, form. We
show that, to leading order, the velocity scales with V = (αgβ)1/2H , where g is gravity, α is
the expansion coefficient, β is the background temperature gradient, and H is the depth of the
domain. We also show that the two most important parameters controlling the flow are Re =
V H/ν and Ro = V/(�H ), where � is the background rotation rate and ν the viscosity. The
Prandtl number and aspect ratio also play an important, if secondary, role. Finally, and most
importantly, we establish the criteria required for eye formation. These consist of a lower
bound on Re, upper and lower bounds on Ro, and an upper bound on the Ekman number.
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I. INTRODUCTION

A well-documented and intriguing feature of atmospheric vortices, such as tropical cyclones and
dust devils, is that they often develop an eye, defined as a region of reversed downward flow in and
around the axis of the vortex (see [1] and references therein). In the case of tropical cyclones, such
an eye is readily identified in satellite images by the absence of cloud cover. Despite their common
appearance, there is still little agreement as to the mechanisms of eye formation [2–4] and indeed it
is not even clear that the same basic mechanisms are responsible in different classes of atmospheric
vortices [5]. In the absence of such a fundamental understanding, one cannot reliably predict when
eyes should, or should not, form.

Recently, however, we [6] identified one mechanism of eye formation in the context of a simple
model problem. Inspired by the geometry of tropical cyclones, they considered convection in a
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FIG. 1. Streamlines highlighting the cyclonic vortex in the center of our convection cell. The conical eyewall
is represented in shaded gray. The parameters are ε = 0.1, Pr = 0.1, E = 0.1, and Ra = 2 × 104.

shallow, rotating, cylindrical domain of low aspect ratio. In particular, they investigated the simplest
physical system that can support an eye in such a geometry, which is the steady, laminar, axisymmetric
convection of a Boussinesq fluid. Such a simple system is free from the complexities which hamper
our understanding of real atmospheric vortices, such as turbulence, stable stratification, ill-defined
boundary conditions, latent heat release from moist convection, and transient evolution. This allowed
the mechanism of eye formation to be unambiguously identified, at least for the model system
considered. It turns out that the eye in such cases is a passive response to the formation of an eyewall,
a thin conical annulus of upward moving fluid which forms near the axis and separates the eye
from the rest of the vortex (see Fig. 1). Such eyewalls are characterized by a particularly intense
level of negative azimuthal (horizontal) vorticity, and Ref. [6] showed that the eye, which is also
characterized by a region of negative azimuthal vorticity, receives its vorticity by slow cross-stream
diffusion from the eyewall. Since the main body of the vortex has positive azimuthal vorticity, it is
natural to ask where the intense negative azimuthal vorticity of the eyewall comes from, and Ref. [6]
established that the eyewall vorticity has its origins in the boundary layer on the bottom surface.

Perhaps it is worth taking a moment to describe the model system of Ref. [6], if only because
we will adopt the same system here. It consists of a rotating cylindrical domain of low aspect ratio
in which the lower surface is a no-slip boundary and the upper surface is stress free. The motion is
driven by a prescribed vertical heat flux through the lower boundary and, in a frame of reference
rotating with the lower boundary, the flow is organized and shaped by the Coriolis force. Crucially,
this Coriolis force induces positive excess swirl in the fluid adjacent to the lower boundary, which
in turn sets up an Ekman-like boundary layer on the lower surface. This boundary layer then drives
flow inward towards the axis and so the primary motion in the vertical plane is radially inward near
the lower boundary and outward at the upper surface. As the fluid spirals inward, it tries to conserve
its angular momentum and this results in a region of particularly intense swirl near the axis.

In the force balance for the bulk of the vortex it was found that the buoyancy and Coriolis and
inertial forces are of similar magnitudes, with a local Rossby number of order unity. However, near
the eyewall the intense swirl means that the local Rossby number is large, with the buoyancy and
Coriolis forces almost completely irrelevant by comparison with inertia. So, surrounding the eyewall
there exists a conventional converging, swirling boundary layer, which separates before reaching the
axis, carrying its intense azimuthal vorticity up into the bulk of the flow. The resulting free shear
layer then constitutes the eyewall, which in turn gives rise to an eye.

For the limited range of parameters considered in Ref. [6], the requirement for an eye to form
is that the Reynolds number based on the peak inflow velocity must exceed Re ∼ 37. By contrast,
at lower values of Re the flow is relatively diffusive and so the negative azimuthal vorticity in the
lower boundary layer cannot be advected upward to form an eyewall, hence the absence of an eye.
Reference [6] established a simple criterion for eye formation. However, Ref. [6] considered only a
relatively small range of parameters, keeping the aspect ratio and Ekman number fixed and varying
the Rayleigh number by a factor of only 30. Here we revisit the entire problem and consider a much
wider range of parameters. In particular, we present the results of a suite of over 150 numerical
simulations in which the Rayleigh number, Ekman number, and aspect ratio are all varied. The
analysis of this suite of simulations shows that the conditions required for eye formation are more
subtle than those suggested in Ref. [6].

013502-2



FORMATION OF EYES IN LARGE-SCALE CYCLONIC …

II. MODEL PROBLEM AND KEY DIMENSIONLESS GROUPS

Our model problem is the same as that in [6]. It consists of the steady laminar flow of a Boussinesq
fluid in a closed rotating cylinder of height H and radius R, with aspect ratio ε = H/R � 1. We adopt
cylindrical polar coordinates (r,φ,z), with the upper and lower boundaries at z = H and z = 0. The
motion is maintained by buoyancy with a prescribed heat flux between the two horizontal boundaries.
The surfaces at z = 0 and r = R are no-slip boundaries, while the upper surface is taken to be stress
free. This choice of boundary conditions is essential to our model as the vorticity generation in
the bottom boundary layer is essential in the eyewall formation. It does not necessarily imply that
countervortices (associated with a downward flow near the axis) are not possible under different
configurations, such as a stress-free bottom boundary. However, such structures would not feature a
sharp eyewall as in the present model.

The choice of fixed heat flux boundary condition is motivated by our intention to model an
elongated vortex: We want to drive a large-scale convective cell in an elongated domain. It is well
known (see, e.g., [7]) that imposed flux boundary conditions will cause the convective cell to extend
horizontally and fill the entire domain. This choice of boundary conditions is also the natural choice
to model intense atmospheric vortices over the ocean, the main source of energy being the flux of
water vapor from the ocean.

In the absence of convection there is an imposed uniform temperature gradient of dT0/dz = −β

and we write the temperature distribution in the presence of convection as T = T0(z) + ϑ . The
governing equation for the temperature disturbance is then

Dϑ

Dt
= κ∇2ϑ + βuz, (1)

where κ is the thermal diffusivity and uz the vertical velocity. We impose ∂ϑ/∂z at z = 0 and z = H

in order to maintain a constant axial heat flux and the outer radial boundary is taken to be thermally
insulating.

Let � be the background rotation rate and ν, α, and ρ0 the kinematic viscosity, expansion
coefficient, and mean density of the fluid. In a frame of reference which rotates with the boundaries
z = 0 and r = R, the governing equation of motion is then

Du
Dt

= −∇(p/ρ0) + 2u × � + ν∇2u − αϑg, (2)

where u is the solenoidal velocity field in the rotating frame, p the departure from a hydrostatic
pressure distribution, and −αϑg the buoyancy force per unit mass. The associated vorticity equation is

Dω

Dt
= ω · ∇u + 2� · ∇u + ν∇2ω + αg × ∇ϑ, (3)

where ω = ∇ × u.
Since we restrict ourselves to axisymmetric velocity fields it is convenient to decompose u into

poloidal up = (ur,0,uz) and azimuthal uφ = (0,�/r,0) components, in which ∇ · up = 0 and � =
ruφ is the angular momentum density in the rotating frame. The azimuthal component of (2) and (3)
then becomes evolution equations for � and ωφ = (∇ × up) · êφ ,

D

Dt
(� + �r2) = ν∇2

� �, (4)
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[See, for example, [8] for a derivation of Eqs. (4) and (5).] The Stokes stream function, defined by
up = ∇ × [(ψ/r)êφ], can be determined from ωφ by inverting the Poisson equation rωφ = −∇2

� ψ . It
follows that the two scalar fields � and ωφ uniquely determine the instantaneous velocity distribution
and so the governing equations for our model system are (1), (4), and (5).

The dimensionless control parameters normally used to investigate the stability of this kind of
rotating convection are

ε = H

R
, Pr = ν

κ
, E = ν

�H 2
, Ra = αgβH 4

νκ
, (7)

where Pr is the Prandtl number, E the Ekman number, and Ra the Rayleigh number. However, since
we are looking at fully developed flow, rather than the stability of a static equilibrium, we will find it
convenient to work with an alternative set of dimensionless parameters. Let us introduce the velocity
scale V = (αgβ)1/2H , which will turn out to be characteristic of the actual fluid velocity. Then an
alternative, if equivalent, set of dimensionless control parameters is

ε = H

R
, Pr = ν

κ
, Re = V H

ν
, Ro = V

�H
, (8)

where Re and Ro are characteristic Reynolds and Rossby numbers. One potential advantage of (8)
over (7) is that, if we are allowed to take V as truly representative of fluid velocity, then Re and
Ro have a simple physical interpretation in terms of the relative dynamical balance in (2). The
dimensionless control parameters (8) indeed naturally enter the nondimensional form of Eqs. (1) and
(2) using H , V , and βH as units of length, speed, and temperature, which provides

Dϑ�

Dt�
= Re−1Pr−1∇2ϑ� + u�

z, (9)

Du�

Dt�
= −∇π + 2 Ro−1u� × êz + Re−1∇2u� + ϑ� êz, (10)

where a star superscript denotes dimensionless quantities. Moreover, we [6] have already noted the
importance of Re as a control parameter for the appearance of an eye. Of course, it is easy to go from
(7) to (8), with Ro = Ra1/2E Pr−1/2 and Re = Ra1/2 Pr−1/2.

The eyewall tends to be confined to the region r < H and, as noted above, the dynamics in the
vicinity of the eyewall tends to be quite different to be that in the bulk of the vortex. In particular,
although the Coriolis and buoyancy forces are of the same order of magnitude as inertia in the bulk,
they are negligible near the eyewall where inertia is particularly high. Consequently, for diagnostic
purposes, we will find it convenient to introduce the following local definitions of Re and Ro. Let
uφ,m be the maximum azimuthal velocity on the surface r = H and ur,δ be the magnitude of the
radial velocity at location (r = H,z = δ), where z = δ is the upper edge of the bottom boundary
layer, defined at a given radius as the point where negative azimuthal vorticity ωφ in the boundary
layer becomes positive. We then define local values of Re and Ro in the vicinity of the eyewall as
Rer = ur,δH/ν, Reφ = uφ,mH/ν, Ror = ur,δ/(�H ), and Roφ = uφ,m/(�H ). More generally, we
introduce local values of Ror (r) and Roφ(r) for any radius, based on the local values of ur,δ(r) and
uφ,m(r).

The numerical values of the dimensionless control parameters used in our suite of numerical
simulations are listed in Table I, along with the corresponding values of Ro, Re, Ror , Rer , and the
magnitude of the maximum downward velocity on the axis |uz|max

r=0. The dimensionless parameters
listed in (7) are restricted to the ranges 0.1 < ε < 0.3, 0.1 < Pr < 1, 0.07 < E < 0.4, and 103 <

Ra < 4.5 × 104. These correspond to values of Re, Ro, and Rer of 45 < Re < 616, 4.5 < Ro <

124, and 6 < Rer < 188. A zero entry for |uz|max
r=0 in the table indicates that no eye formed in that

simulation, while a nonzero value provides a measure of the strength of the eye.
There are 157 simulations in total. Each numerical experiment comprises an initial-value problem

which is run until a steady state is reached. We solve Eqs. (1), (4) and (5) using second-order finite
differences with an implicit second-order backward differentiation in time. The grid resolution is
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TABLE I. Controlling parameters Ra, Ro, and Re and the diagnostic quantities Ror , Rer , and |uz|max
r=0 in our

numerical database.

Ra Ro Re Ror Rer |uz|max
r=0

ε = 0.1, E = 0.07, Pr = 0.1
2000 9.90 141.42 1.80 25.72 0
3500 13.10 187.08 2.84 40.56 0

ε = 0.1, E = 0.075, Pr = 0.1
3200 13.42 178.89 2.99 39.82 0
3700 14.43 192.35 3.38 45.00 0
4200 15.37 204.94 3.77 50.23 0

ε = 0.1, E = 0.085, Pr = 0.1
1650 10.92 128.45 2.26 26.56 0
1700 11.08 130.38 2.33 27.36 0
2200 12.61 148.32 2.96 34.86 0
2500 13.44 158.11 3.33 39.19 0
2800 14.22 167.33 3.69 43.46 0
2900 14.47 170.29 3.81 44.87 0.0023
3000 14.72 173.21 3.93 46.25 0.0076

ε = 0.1, E = 0.09, Pr = 0.1
1700 11.73 130.38 2.66 29.55 0
2000 12.73 141.42 3.12 34.69 0
2300 13.65 151.66 3.57 39.63 0.0230
2500 14.23 158.11 3.86 42.87 0.0486

ε = 0.1, E = 0.1, Pr = 0.1
1000 10.00 100.00 1.77 17.66 0
1500 12.25 122.47 2.97 29.71 0
1650 12.85 128.45 3.30 32.96 0
1700 13.04 130.38 3.40 34.01 0.0041
1750 13.23 132.29 3.51 35.06 0.0150
1800 13.42 134.16 3.61 36.10 0.0281
1900 13.78 137.84 3.81 38.14 0.0563
2000 14.14 141.42 4.01 40.15 0.0840
5000 22.36 223.61 8.53 85.28 0.3024
20000 44.72 447.21 17.61 176.10 1.6691

ε = 0.1, E = 0.1, Pr = 0.3
2000 8.16 81.65 1.90 18.95 0
4000 11.55 115.47 3.03 30.33 0
5000 12.91 129.10 3.46 34.56 0
5500 13.54 135.40 3.64 36.44 0.0168
6000 14.14 141.42 3.82 38.20 0.0699
8000 16.33 163.30 4.43 44.26 0.3565
9000 17.32 173.21 4.68 46.83 0.4369

ε = 0.1, E = 0.1, Pr = 0.4
6000 12.25 122.47 2.98 29.82 0
8000 14.14 141.42 3.50 34.96 0
8300 14.40 144.05 3.57 35.66 0
8450 14.53 145.34 3.60 35.99 0.0016
8600 14.66 146.63 3.63 36.33 0.0080
8800 14.83 148.32 3.68 36.78 0.0203
9000 15.00 150.00 3.72 37.22 0.0359
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TABLE I. (Continued.)

Ra Ro Re Ror Rer |uz|max
r=0

ε = 0.1, E = 0.1, Pr = 0.5
6000 10.95 109.54 2.42 24.24 0
8000 12.65 126.49 2.86 28.58 0
10000 14.14 141.42 3.23 32.34 0
11500 15.17 151.66 3.49 34.88 0
12000 15.49 154.92 3.57 35.68 0
13000 16.12 161.25 3.72 37.21 0.0246
15000 17.32 173.21 3.99 39.85 0.6992

ε = 0.1, E = 0.1, Pr = 0.65
16000 15.69 156.89 3.29 32.90 0
18000 16.64 166.41 3.51 35.09 0
19000 17.10 170.97 3.61 36.13 0
21000 17.97 179.74 3.81 38.11 0.0523
21250 18.08 180.81 3.83 38.34 0.0944

ε = 0.1, E = 0.1, Pr = 0.8
8000 10.00 100.00 1.82 18.15 0
15000 13.69 136.93 2.61 26.08 0
25000 17.68 176.78 3.48 34.80 0
27000 18.37 183.71 3.63 36.35 0
28700 18.94 189.41 3.76 37.60 0
29300 19.14 191.38 3.80 38.04 0
29400 19.17 191.70 3.81 38.11 0
29500 19.20 192.03 3.82 38.18 0
29650 19.25 192.52 3.83 38.29 0.0005
29700 19.27 192.68 3.83 38.33 0.0020

ε = 0.1, E = 0.1, Pr = 1
2000 4.47 44.72 0.62 6.22 0
40000 20.00 200.00 3.71 37.10 0
42000 20.49 204.94 3.81 38.15 0
43000 20.74 207.36 3.87 38.69 0
43000 20.74 207.36 3.98 39.76 3.1408
44000 20.98 209.76 4.03 40.34 3.2326
45000 21.21 212.13 4.09 40.90 3.3116

ε = 0.1, E = 0.12, Pr = 0.1
1100 12.59 104.88 2.97 24.72 0
1300 13.68 114.02 3.67 30.59 0
1400 14.20 118.32 4.00 33.36 0
1500 14.70 122.47 4.32 36.03 0.0384
1650 15.41 128.45 4.79 39.90 0.1263

ε = 0.1, E = 0.15, Pr = 0.1
1200 16.43 109.54 4.78 31.90 0
1350 17.43 116.19 5.45 36.35 0.0003
1400 17.75 118.32 5.67 37.77 0.0260
1500 18.37 122.47 6.07 40.49 0.1134
1650 19.27 128.45 6.64 44.29 0.2669
1800 20.12 134.16 7.18 47.83 0.4154
1900 20.68 137.84 7.51 50.05 0.5049
10000 47.43 316.23 17.70 118.03 1.9520
20000 67.08 447.21 22.44 149.59 2.4840
27000 77.94 519.62 24.85 165.68 2.6067
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TABLE I. (Continued.)

Ra Ro Re Ror Rer |uz|max
r=0

33000 86.17 574.46 26.71 178.05 2.6655
35000 88.74 591.61 27.30 182.00 2.6783
38000 92.47 616.44 28.17 187.78 2.6902

ε = 0.1, E = 0.17, Pr = 0.1
1100 17.83 104.88 5.06 29.79 0
1300 19.38 114.02 6.09 35.84 0
1400 20.11 118.32 6.55 38.55 0
1500 20.82 122.47 6.99 41.12 0.0583
1600 21.50 126.49 7.40 43.51 0.1636
1800 22.81 134.16 8.15 47.92 0.4005
25000 85.00 500.00 26.55 156.18 2.4819
30000 93.11 547.72 28.41 167.12 2.8008

ε = 0.1, E = 0.2, Pr = 0.1
1500 24.49 122.47 8.13 40.63 0
1650 25.69 128.45 8.77 43.85 0
1750 26.46 132.29 9.16 45.82 0.0429
1800 26.83 134.16 9.35 46.77 0.0835
1900 27.57 137.84 9.71 48.55 0.1797
2000 28.28 141.42 10.05 50.25 0.2859
4000 40.00 200.00 14.58 72.92 1.8018
6000 48.99 244.95 17.32 86.62 2.2864
8000 56.57 282.84 19.42 97.08 2.5055
10000 63.25 316.23 21.17 105.86 2.6395
20000 89.44 447.21 27.10 135.50 0.4030
25000 100.00 500.00 29.13 145.65 0

ε = 0.1, E = 0.22, Pr = 0.1
1650 28.26 128.45 9.45 42.96 0
2000 31.11 141.42 10.80 49.08 0
3000 38.11 173.21 13.59 61.77 0.5521
4000 44.00 200.00 15.58 70.83 1.0177
6000 53.89 244.95 18.51 84.15 1.2230
10000 69.57 316.23 22.47 102.12 0.2218
12000 76.21 346.41 23.93 108.80 0
15000 85.21 387.30 25.80 117.28 0

ε = 0.1, E = 0.235, Pr = 0.1
3000 40.70 173.21 14.20 60.41 0
6000 57.56 244.95 19.25 81.92 0
10000 74.31 316.23 23.21 98.77 0
13000 84.73 360.56 25.41 108.11 0

ε = 0.1, E = 0.25, Pr = 0.1
2000 35.36 141.42 11.76 47.03 0
3500 46.77 187.08 15.85 63.41 0
5000 55.90 223.61 18.49 73.97 0
10000 79.06 316.23 23.95 95.81 0
15000 96.82 387.30 27.59 110.36 0
19000 108.97 435.89 29.95 119.78 0

ε = 0.1, E = 0.3, Pr = 0.1
2000 42.43 141.42 13.03 43.44 0
10000 94.87 316.23 26.64 88.81 0
15000 116.19 387.30 30.97 103.22 0
17000 123.69 412.31 32.43 108.10 0
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TABLE I. (Continued.)

Ra Ro Re Ror Rer |uz|max
r=0

ε = 0.1, E = 0.4, Pr = 0.1
2000 56.57 141.42 15.52 38.79 0

ε = 0.15, E = 0.1, Pr = 0.1
1300 11.40 114.02 2.93 29.28 0
1400 11.83 118.32 3.24 32.44 0.0175
1500 12.25 122.47 3.55 35.45 0.0711
1700 13.04 130.38 4.10 40.99 0.1898

ε = 0.2, E = 0.1, Pr = 0.1
1000 10.00 100.00 2.12 21.25 0
1200 10.95 109.54 2.83 28.33 0
1450 12.04 120.42 3.55 35.46 0.0588
1500 12.25 122.47 3.67 36.68 0.0878
2000 14.14 141.42 4.65 46.53 0.3919
4000 20.00 200.00 6.73 67.28 1.0136
10000 31.62 316.23 9.63 96.27 1.3347
20000 44.72 447.21 12.65 126.50 1.6677

ε = 0.25, E = 0.1, Pr = 0.1
1500 12.25 122.47 3.54 35.44 0
2000 14.14 141.42 4.34 43.41 0.1366
2500 15.81 158.11 4.94 49.35 0.2948
4000 20.00 200.00 6.22 62.23 0.5584

ε = 0.27, E = 0.1, Pr = 0.1
1000 10.00 100.00 2.26 22.62 0
2000 14.14 141.42 4.29 42.88 0.0168
3000 17.32 173.21 5.36 53.60 0.1041
5000 22.36 223.61 6.79 67.85 0.0026
7000 26.46 264.58 7.79 77.94 0

ε = 0.3, E = 0.1, Pr = 0.1
1000 10.00 100.00 2.17 21.70 0
2000 14.14 141.42 4.09 40.85 0
4000 20.00 200.00 5.77 57.67 0
6000 24.49 244.95 6.80 67.96 0
9000 30.00 300.00 7.90 79.01 0
12000 34.64 346.41 8.74 87.39 0

1000 radial × 500 axial cells and grid resolution studies were performed to ensure convergence. The
strength and shape of the eye depends on the parameter regime (see Table I and Fig. 2).

III. GENERAL FLOW STRUCTURE AND SCALING LAWS

As a prelude to our discussion of the conditions under which eyes form, it is useful to consider
the general structure of the flow and the scaling laws for the velocity field. In order to illustrate some
of the more general features of the flow, let us start by considering the specific (though typical) case
in which the control parameters are ε = 0.1, Pr = 0.1, E = 0.1, and Ra = 2 × 104, or equivalently
Re = 447 and Ro = 44.7. The Reynolds number and Rossby number in the vicinity of the eyewall
are Rer = 176 and Roφ = 30.

The Stokes stream function and radial variations of Ror (r) and Roφ(r) for this case are shown in
Fig. 3 and it is evident that an eye has formed near the axis. Note that Roφ(r), and hence uφ , rises
rapidly as we approach the eyewall, which is a consequence of approximate angular momentum
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FIG. 2. Similar representation as Fig. 1 for different choices of parameters: (a) ε = 0.1, Pr = 0.1, E = 0.15,
and Ra = 1 × 104 and (b) ε = 0.1, Pr = 1, E = 0.1, and Ra = 4.5 × 104.

conservation in the incoming flow. The local value of Roφ near the eye is therefore large and
background rotation has no direct influence on the flow in this region. Note also that uφ,m is smaller
than ur,δ in the bulk of the vortex, but that uφ,m exceeds ur,δ near the eyewall.

Figure 4 shows the corresponding distributions of azimuthal velocity uφ , angular momentum �,
and total temperature T = T0(z) + ϑ . The intensification of uφ by the inward advection of angular
momentum is evident in Fig. 4(a), while Fig. 4(b) shows that, in the region immediately to the right
of the eye, the contours of constant angular momentum are roughly aligned with the streamlines,
indicative of D�/Dt � 0. This is to be expected from (4), given that the background rotation is
locally weak and diffusion is largely restricted to the boundary layer and the eyewall. This figure
also shows a substantial region of negative uφ (anticyclonic rotation) at large radius, something that
is also noted in Ref. [6] and is observed in tropical cyclones. From Fig. 4(c) we see that the poloidal
flow sweeps hot fluid upward near the axis and cold fluid downward and inward at r = R. The
resulting negative radial gradient in temperature drives the main poloidal vortex, ensuring that it has
positive azimuthal vorticity in accordance with Eq. (5).

The structure of the eyewall is particularly evident in Fig. 5, which shows the distribution of
azimuthal vorticity ωφ/r . It is clear that there are intense levels of azimuthal vorticity in the vicinity
of the eyewall and indeed it is natural to define the eyewall as the conical annulus of strong negative
azimuthal vorticity. The eyewall then separates the eye from the primary vortex. Note also that an
intense region of negative azimuthal vorticity has built up in the lower boundary layer and it is
shown in Ref. [6] that this is the ultimate source of the eyewall vorticity. A region of strong positive
azimuthal vorticity is also evident between the lower boundary and the eyewall. As noted in Ref. [6],
this is a local effect caused by the source term ∇ · [(�2/r4)êz] in (5), which is particularly large near
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(c)

FIG. 3. (a) Stokes stream function. Also shown are radial variations of (b) Ror (r) and (c) Roφ(r). The
parameters are ε = 0.1, Pr = 0.1, E = 0.1, and Ra = 2 × 104.
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FIG. 4. Color maps of (a) the azimuthal velocity uφ , (b) the angular momentum � superimposed on the
stream function, and (c) the total temperature T = T0(z) + ϑ . The parameters are ε = 0.1, Pr = 0.1, E = 0.1,
and Ra = 2 × 104.

the base of the eyewall. However, since this source term takes the form of a flux it cannot contribute
to the mean azimuthal vorticity in the eyewall (see Ref. [6]).

The general structure of the flow shown in Figs. 3–5 is typical of all of our simulations which exhibit
an eye. However, the scaling of the various velocity components and the characteristic thickness of
the bottom boundary layer depends on the precise values of the control parameters. Let us start with
some observations about the thickness of the bottom boundary layer.
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(b) −500 −250 0 250 500

FIG. 5. Color map of ωφ/r superimposed on the streamlines. (a) Full flow field. (b) Flow in the inner quarter
of the domain. The parameters are ε = 0.1, Pr = 0.1, E = 0.1, and Ra = 2 × 104.
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FIG. 6. Dimensionless boundary-layer thickness at mid radius δ�(r = R/2) as a function of (a) Ro and
(b) E.

Figure 6 shows δ� = δ/H , the dimensionless boundary-layer thickness, evaluated at mid radius
r = R/2 and plotted as a function of Ro in Fig. 6(a) and E in Fig. 6(b). The results of all 87 numerical
simulations for ε = 0.1 and Pr = 0.1 are shown. It is clear from Fig. 6(a) that there are two regimes.
For Ro < 25 we see that δ is an increasing function of Ro, while for Ro > 30 there is evidence that
δ saturates at approximately H/4. We will see shortly that these two distinct regimes also manifest
themselves in the scaling laws for the velocity field, with a transition at around Ro ∼ 25. Figure 7
shows the same data, but for the location r = H . The boundary layer is now much thinner and there
is some suggestion in Fig. 7(b) that δ� ∼ E1/2. This in turn suggests that the boundary layer at r = H

scales approximately as δ ∼ (ν/�)1/2, as in a conventional Ekman layer.
We now consider the velocity ratio uφ,m/ur,δ . A preliminary analysis of the data indicates that this

velocity ratio scales approximately as uφ,m/ur,δ ∼ E−1/2, a scaling which is highlighted in Fig. 8,
together with the remaining Rossby number dependence.

Regarding the scaling laws for the velocity field, it is instructive to integrate Eq. (2) once around
a closed streamline. The inertial, pressure, and Coriolis terms all drop out and we are left with the
simple expression

ν

∮
∇2u · dr =

∮
(αϑg) · dr. (11)
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FIG. 7. Dimensionless boundary-layer thickness at r = H and δ�(r = H ) as a function of (a) Ro and (b)
E. The dashed line corresponds to δ� ∼ E1/2.
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FIG. 8. Velocity ratio E1/2uφ,m/ur,δ at r = H as a function of Ro.

This represents an energy balance for a fluid particle as it is swept once around a closed streamline.
In particular, it represents the balance between the viscous dissipation of energy and the work
done on the fluid particle by the buoyancy force as the particle is carried around a streamline. For those
cases in which the dissipation occurs primarily in the bottom boundary layer, this yields the estimate

ν
ur,δ

δ2
R ∼ αgβH 2 = V 2. (12)

(We have taken advantage of the fact that uφ,m/ur,δ � 1 at most radii to omit the contribution from
uφ .) If, in addition, we adopt the suggestion of Fig. 7(b) that the boundary layer thickness scales as
δ ∼ (ν/�)1/2, as in an Ekman layer, then we conclude that

ur,δ

V
∼ V

�R
= ε Ro. (13)

However, this estimate holds only when there is a well-developed boundary layer on the lower
surface in which δ is much thinner than H . If the boundary layer grows to be of order H , on the
other hand, the dissipation will be distributed throughout the bulk of the fluid and we would expect a
different scaling law to hold. Figure 6(a) tentatively suggests that scaling (13) might be appropriate
for Ro < 25, but not for Ro > 30.

Figure 9 shows ur,δ/V [Fig. 9(a)], uφ,m/V [Fig. 9(b)], and E1/2uφ,m/V [Fig. 9(c)], all evaluated at
r = H and plotted against Ro. The data in Fig. 9(a) support the idea that there are two regimes, with a
transition at around Ro ∼ 25. Moreover, for Ro < 25 there is some evidence in support of (13), while
for Ro > 25 the radial velocity saturates at ur,δ ∼ V . There is considerably more scatter in Fig. 9(b),

(a)
20 40 60 80 100 120

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

u
r
,δ

/
V

Ro (b)
20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u
φ

,m
/
V

Ro (c)
20 40 60 80 100 120

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

E
1

/
2
u

φ
,m

/
V

Ro

FIG. 9. Plot of (a) ur,δ/V at r = H as a function of Ro, (b) uφ,m/V versus Ro, and (c) E1/2uφ,m/V

versus Ro.
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FIG. 10. Variation of (a) the width of the eyewall as measured by δ�
ew (the dashed line indicates a Re−1/2

r

scaling) and (b) the peak azimuthal vorticity in the eyewall ω�
φ,ew, both as a function of the Reynolds

number Rer .

which shows uφ,m/V as a function of Ro. However, we have already noted that uφ,m/ur,δ ∼ E−1/2 at
r = H and so Fig. 9(c) shows the same data in the form E1/2uφ,m/V . The data are now reasonably
well collapsed and again there is clear evidence of a transition in regimes at around Ro ∼ 25.

Let us finally consider the thickness and strength of the vorticity in the eyewall. We define the width
of the eyewall δ�

ew as the horizontal extent of the negative azimuthal vorticity at the height of the eye
center zeye (we restrict ourselves here to cases in which an eye was observed). It is to be expected that
the width of the eyewall δ�

ew depends on the ratio of advection along the eyewall to that of cross-stream
diffusion. This appears to be well supported by Fig. 10(a). Indeed, the width of the eyewall appears to
scale as Re−1/2

r , as anticipated from a balance of streamwise advection and cross-stream diffusion. The
strength of the vorticity in the eyewall can be estimated as ω�

φ,ew = −min[ω�
φ(r,zeye)]. Figure 10(b)

shows the increase of ω�
φ,ew as the Reynolds number Rer is increased. The nature of the supercritical

bifurcation to an eye will be the subject of the next section.

IV. TRANSITION TO AN EYE

It was noted in Ref. [6] that, for the limited set of cases examined, an eye would not form when
Rer < 37. The reason is that the flow is then too diffusive for the boundary layer vorticity to be
advected up in the bulk for the flow and without this boundary layer vorticity, an eyewall cannot
form. We now revisit this transition from no eye to an eye, focusing exclusively on the flow in the
region r � H . We will use as a measure of the strength of the eye the magnitude of the maximum
downward velocity on the axis |uz|max

r=0. The value of |uz|max
r=0 observed in each simulation is listed in

Table I, with a zero entry for |uz|max
r=0 in the table indicating that no eye formed in that simulation.

Figure 11 shows |uz|max
r=0 plotted as a function of the measured Rer [Fig. 11(a)] and the controlled

Re [Fig. 11(b)] for different values of E. (Both Pr and ε are held fixed at ε = 0.1 and Pr = 0.1.) There
is indeed a supercritical bifurcation to an eye at around Rer,crit ∼ 40, but there is also clear evidence
that the critical Reynolds number Rer,crit depends on E, with Rer,crit varying from around 34 up to a
maximum of 50. The control parameter Re yields somewhat more scatter in the plot of |uz|max

r=0 versus
Re, but the general trend is similar, with a supercritical bifurcation in the range 110 < Recrit < 170.

The degree to which the critical Reynolds numbers Rer,crit and Recrit vary with E, Pr, and ε is
explored in Fig. 12. Figures 12(a) and 12(b) show the dependence on E, Figs. 12(c) and 12(d) the
dependence on Pr, and Figs. 12(e) and 12(f) the dependence on ε. Interestingly, there is an optimum
Ekman number for eye formation in the sense that Rer,crit and Recrit both exhibit minima. This
minimum is around E ∼ 0.1 for Rer,crit and E ∼ 0.15 for Recrit. Note also that no eyes are observed
when E falls below 0.07 or rises above 0.25, as indicated by the gray areas in Figs. 12(a) and 12(b).
We will return to this observation shortly. There is also an optimal value of ε for eye formation, at
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FIG. 11. Bifurcation diagrams of |uz|max
r=0 versus Reynolds number, with (c) and (d) focused on the region

of the bifurcation. The Ekman number is allowed to vary, but Pr and ε are fixed at Pr = ε = 0.1. The color
code indicates the values of E, with E = 0.085 (white), E = 0.090 (black), E = 0.10 (blue), E = 0.12 (light
blue), E = 0.15 (green), E = 0.17 (yellow), E = 0.20 (pink), and E = 0.22 (red). (a) and (c) Plot of |uz|max

r=0 as
a function of Rer . (b) and (d) Plot of |uz|max

r=0 as a function of Re.

around ε ∼ 0.15–0.2, with a complete absence of eyes for ε > 0.3 (at least for the range of parameters
considered here). This suggests that a low aspect ratio is important for eye formation in this particular
model problem.

The dependence of Rer,crit and Recrit on Pr is more complicated. While Rer,crit is only weakly
dependent on Pr, Recrit displays a marked dependence on Pr, with Recrit rising sharply as Pr is
increased. However, since Rer,crit is evaluated near the eyewall and Recrit is a global quantity, we
interpret Fig. 12(c) as indicating that Pr plays little or no role in the local dynamics of eye formation.
The apparent dependence on Pr in Fig. 12(d) is then a manifestation of the fact that the global flow
structure, and hence the ratio Rer/Re, is a function of Pr.

While there are clearly lower bounds on Rer,crit and Recrit for eye formation, it is natural to ask if
other conditions need to be satisfied. For example, the absence of eyes in Fig. 12 for E < 0.07 and
E > 0.25 is intriguing. This is explored in Fig. 13, which presents scatter plots (or phase diagrams)
of E versus Rer [Fig. 13(a)] and E versus Re [Fig. 13(b)]. In both cases the closed circles indicate
the absence of an eye and the open circles the presence of an eye. As in Fig. 11, Pr and ε are both
held fixed at Pr = ε = 0.1. A more complex picture now emerges, with both upper and lower limits
on E for eye formation, in addition to the lower bounds on Rer,crit and Recrit.

The upper limit on E is to be expected from a consideration of global dynamics. That is to say,
the presence of an eye rests on the formation of an eyewall and this in turn requires the presence of
a thin Ekman-like boundary layer surrounding the axis within which the fluid spirals inward. If E is
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FIG. 12. Critical Reynolds numbers (a), (c), and (e) Rer,crit and (b), (d), and (f) Recrit. The gray areas denote
the absence of an eye. The diamonds correspond to a hysteretic case.

too large, then the Coriolis force acting in the bulk is unable to establish such a thin boundary layer
in the face of strong viscous forces.

V. DISCUSSION

Let us now pull together the results of Sec. IV and summarize the conditions under which an eye
is likely to form, at least in the particular model system investigated here. This is summarized in
cartoon fashion in Fig. 14 as a phase diagram of E versus Re, with Pr and ε both held fixed.

We suggest that the regime in which eyes are expected to form is limited by four curves. Line 4 is
the lower bound on Re identified in Ref. [6], while line 1 is the upper bound on E discussed above.
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FIG. 13. Scatter plots of (a) E versus Rer and (b) E versus Re. The closed circles indicate the absence of an
eye and the open circles the presence of an eye. Both Pr and ε are held fixed at Pr = ε = 0.1.

Curves 2 and 3 are both of the form

E = Rocrit/Re (14)

and represent upper and lower bounds on the Rossby number. While there is clear evidence in favor
of lines 1 and 4 in Fig. 13, there is only moderate support for lines 2 and 3. However, upper and
lower bounds on Ro, as expressed by (14), are conceptually necessary, as we now discuss.

The idea behind an upper bound on Ro is the assertion that the Coriolis force is essential for
shaping the global flow pattern into a configuration favorable to eye formation. In particular, an
appreciable Coriolis force acting on the bulk of the vortex is required to induce an Ekman-like
boundary layer on the lower surface, without which an eyewall cannot form. So the Coriolis force
cannot be significantly smaller than either the viscous or the inertial forces in the main body of
the vortex. The restriction that the Coriolis force outweighs the viscous stresses leads to line 1, as
discussed above, while the requirement that it is at least as large as the inertial forces places an upper
bound on Ro and yields line 2.

The lower bound on Ro stems from the fact that the local dynamics of eye formation occurs
without any significant local influence from the buoyancy or Coriolis forces, as emphasized in
Ref. [6]. Indeed, it is essential that Roφ is large (or at least greater than unity) at r = H , as otherwise
quasigeostrophy near the axis would prevent the lower boundary separating to form a conical shear
layer and hence prevent the formation of an eyewall. So we require Roφ > 1 for an eye to form and
this in turn suggests a lower bound on Ro in the bulk of the flow, thus leading to curve 3. Certainly,

E

Re

1

2

34

FIG. 14. Schematic structure of the phase diagram for the appearance of eyes in the model system considered
in this paper. Eyes are not expected to form outside the shaded region limited by the four curves shown. Extension
of this domain to the right of this figure is so far unexplored.
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it is noticeable that in tropical cyclones Roφ near the eyewall is invariably significantly larger than
unity.

In summary, then, there is clear supporting evidence for lines 1 and 4 in Fig. 13 and also some
support for lines 2 and 3. Nevertheless, conceptually, consistency requires an upper bound on Ro and
a lower bound on Roφ for eye formation, at least for the particular model system considered here.

It is interesting to consider the applicability of our simplified model to large-scale cyclonic vortices
occurring in atmospheric flows, such as tropical cyclones. Of course, one must be cautious in such
attempts and it is important to stress that certain essential characteristics of atmospheric vortices
have been dropped in the present model. These include vertical stratification, spatially varying and
anisotropic eddy viscosity, and latent heat release due to water vapor condensation. However, most
large-scale atmospheric vortices (e.g., tropical cyclones, medicanes, and polar lows) exhibit an eye,
which may be related to the eye in our simplified model.

The appropriate level of turbulent diffusion required to model a tropical cyclone is a poorly
constrained quantity [9]. It is most certainly nonuniform in space and anisotropic. For the sake of
simplicity, we could estimate an order of magnitude for the relevant Ekman number, based on eddy
viscosities in the range 1–103 m2 s−1 and latitudes varying between some 10◦ and 30◦. This yields an
estimate of the Ekman number in the range 10−4–0.2. The global positioning system dropwindsonde
observations in actual tropical cyclones indicate that the inward radial flow above the boundary layer
and at a radius close to the eye is smaller, by a factor of about 10, than the azimuthal flow at the
same location [10]. This suggests, via the ratio uφ,m/ur,δ ∼ E−1/2, an effective Ekman number of
the order of 10−2. Such estimates happen to be consistent with estimates of the eddy viscosity above
the boundary layer as well as with observations of the boundary layer thickness in actual tropical
cyclones [11]. Reynolds and Rossby number estimates may then be constructed on the basis of such
eddy viscosity orders of magnitude and in situ measurements of the inward radial flow (typically
5 m s−1) and azimuthal flow (typically 50 m s−1). These estimates suggest that Rer lies in the range
102–105 and Roφ in the range 70–220, which include the parameter range covered by our numerical
study. Another encouraging observation concerns the tilt of the eyewall. Airborne Doppler radar data
indicate that the eyewall in hurricanes is on average characterized by a tilt angle of some 45◦ [12,13],
comparable to the tilt produced in the simplified model (see Fig. 5). These observations may indicate
that the fluid mechanics model presented here, albeit simplified, is not irrelevant to some aspects of
the dynamics of tropical cyclones and could capture some of the important physical mechanisms.

We should stress, however, the important distinction between the large-scale vortices discussed
here and elongated atmospheric vortices, such as tornadoes or dust devils. These tornadolike vortices
have an inverse aspect ratio compared to our model. They do exhibit an eyelike structure, possibly
associated with vortex breakdown. However, this breakdown is characterized by a much steeper wall
(see, for example, [14–16]). Such phenomena correspond to a different configuration (in terms of
both aspect ratio and controlling parameters) and our model is not relevant to such flows. Rather, we
intend to model atmospheric vortices characterized by a large horizontal scale.

VI. CONCLUSION

We have extended the study of Ref. [6], establishing scaling laws for the flow and mapping out
the conditions under which an eye will form. We have shown that, to leading order, the velocity
scales on V = (αgβ)1/2H and that the two most important parameters controlling the dynamics are
Re = V H/ν and Ro = V/(�H ), with Pr and ε playing an important but secondary role. We have
also shown that the criterion for eye formation in Ref. [6] is too simplistic and that upper and lower
bounds on Ro, as well as an upper bound on E, must be taken into consideration.
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