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S U M M A R Y
State of the art numerical models of the Geodynamo are still performed in a parameter regime
extremely remote from the values relevant to the physics of the Earth’s core. In order to establish
a connection between dynamo modelling and the geophysical motivation, it is necessary to
use scaling laws. Such scaling laws establish the dependence of essential quantities (such
as the magnetic field strength) on measured or controlled quantities. They allow for a direct
confrontation of advanced models with geophysical constraints.

We combine a numerical approach, based on a multiple linear regression method in the
form of power laws, applied to a database of 102 direct numerical simulations (courtesy of U.
Christensen), and a physical approach, based on energetics and forces balances.

We show that previous empirical scaling laws for the magnetic field strength essentially
reflect the statistical balance between energy production and dissipation for saturated dy-
namos. Such power based scaling laws are thus necessarily valid for any dynamo in statistical
equilibrium and applicable to any numerical model, irrespectively of the dynamo mechanism.

We show that direct numerical fits can provide contradictory results owing to biases in the
parameters space covered in the numerics and to the role of a priori hypothesis on the fraction
of ohmic dissipation.

We introduce predictive scaling laws, that is relations involving input parameters of the
governing equations only. We guide our reasoning on physical considerations. We show that our
predictive scaling laws can properly describe the numerical database and reflect the dominant
forces balance at work in these numerical simulations. We highlight the dependence of the
magnetic field strength on the rotation rate. Finally, our results stress that available numerical
models operate in a viscous dynamical regime, which is not relevant to the Earth’s core.

Key words: Dynamo: theories and simulations; Geomagnetic induction.

1 I N T RO D U C T I O N

Many numerical models have been produced over the last few years
to try and reproduce characteristics of planetary and stellar mag-
netic fields. The parameter regime relevant to these natural objects
is however out of reach of present days computational resources. In
order to assess the reliability of current numerical models and their
relevance to natural applications, it is thus necessary to rely on scal-
ing laws, which can be established on the basis of a set of numerical
models with varying control parameters and then extended to the
regime of geophysical or astrophysical relevance.

Previous empirical scaling laws for the magnetic field strength
(Christensen & Aubert 2006) have proven to be remarkably robust.
Indeed they seem to be applicable to numerical models irrespec-
tively of the parameter regime, viscous or inertial (Christensen 2010;
Schrinner et al. 2012), as well as to natural objects of very different
kinds (Christensen et al. 2009). Such scaling laws are constructed
on the basis of a statistical balance between energy production and
dissipation. It is essential to separate the relative importance of this
general assumption – which will necessarily be valid for any dy-

namo in statistical equilibrium – from additional assumptions which
could test the nature of a particular dynamo. An additional key is-
sue is that such existing relations only relate measured quantity.
They have no predictive power for numerical models in the sense
that the knowledge of control parameters (entering the governing
equations) is not sufficient to a priori estimate the strength of the
produced magnetic field. We therefore want to introduce predictive
scaling laws, which a priori estimate the amplitude of a measured
quantity (say the magnetic field strength) as a function of input
parameters only.

2 G OV E R N I N G E Q UAT I O N S
A N D N U M E R I C A L M O D E L S

We restrict our study to Boussinesq models of planetary dynamos.
The domain consists of a spherical shell, and the aspect ratio be-
tween the two bounding spheres is set to ξ ≡ ri/ro = 0.35 . The
flow is driven by an imposed difference of temperature between the
inner and outer boundaries.
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The governing equations in the rotating reference frame can then
be written – using L = ro − ri as unit of length, �−1 as unit of time,
�T as unit of temperature, and

√
ρμ�L as unit for the magnetic

field – as

∂t u� + (u� · ∇)u� = −∇π� + E �u� − 2ez × u�

+ Ra E2

Pr
T � r

ro
+ (∇ × B�) × B�, (1)

∂t B� = ∇ × (u� × B�) + E

Pm
�B�,

∂t T
� + (u� · ∇)T � = E

Pr
�T �, (2)

∇ · u� = ∇ · B� = 0 . (3)

Because the governing equations involve nine independent physical
parameters (α, g0, �T, ν, κ , η, �, ρ, μ) and five units (kg, m, s, K,
C), owing to the Buckingham π theorem, only four independent
non-dimensional parameters can be introduced. In our system (eqs
1–3), they are the Ekman number E = ν/(�L2) , the Prandtl number
Pr = ν/κ , the magnetic Prandtl number Pm = ν/η , and the Rayleigh
number Ra = αg0�TL3/(νκ) , in which ν is the kinematic viscosity
of the fluid, α the coefficient of thermal expansion, g0 the gravity at
the outer bounding sphere, κ = k/(ρc) its thermal diffusivity, and
η its magnetic diffusivity. Throughout this article, non-dimensional
quantities are denoted with a �.

All the simulations used in this work rely on no-slip mechanical
boundary conditions and an insulating outer domain. The inner core
is insulating in most simulations, and a few simulations involve a
conducting inner core with the same conductivity as the fluid.

Our analysis will be tested against a wide database of 185 direct
numerical simulations kindly provided by U. Christensen. The data
sample is reduced to 102 to only take into account dynamo simu-
lations corresponding to fully developed convection (Nu > 2) and
producing a dipolar magnetic field (relative dipole field strength fdip

larger than 0.5). Moreover, we limit our study to Pr ≤ 10, that is to
say to values not too far from the value estimated for the Earth’s
core. We will also highlight the subset of this database which was
used in Christensen & Aubert (2006). It is composed of 65 runs
available at the time. Finally we will use a few additional numerical
data published in Morin & Dormy (2009).

These numerical data can be used to test scaling laws guided
by physical reasoning. It can also be used to establish direct nu-
merical fits. To this end, we introduce a multiple linear regression
approach (Montgomery et al. 2001; Cornillon & Matzner-Lober
2010), detailed in Appendix A.

3 P OW E R B A S E D S C A L I N G S , K E Y
PA R A M E T E R S A N D T H E I R R E L AT I O N S

3.1 Energy balance between production and dissipation

In order to derive a scaling law for the magnetic field strength,
a possible approach introduced by Christensen & Aubert (2006)
is to consider the statistical balance between energy production
by buoyancy forces and dissipation. Time averaged quantities of a
statistically steady dynamo state should obviously satisfy

P = Dη + Dν, (4)

where P is the power generated by buoyancy forces, Dη is the rate
of ohmic dissipation

Dη =
∫

V

η

μ
(∇×B)2 dV, that is D�

η =Eη

∫
V

(∇×B�)2 dV �,

in which Eη = E/Pm is the magnetic Ekman number and Dν is the
rate of viscous dissipation

Dν =
∫

V
ρν (∇×u)2 dV, that is D�

ν = E
∫

V
(∇×u�)2 dV � .

The above quantities are all defined as time averaged over a sufficient
amount of time, so that they are steady for a given parameter set.

Following Christensen & Aubert (2006) and introducing the fohm

coefficient, defined as

fohm ≡ Dη

Dη + Dν

, (5)

we get

P = Dη

fohm
= 1

fohm

∫
V

η

μ
(∇ × B)2 dV ∼ 1

fohm

η

μ

B2

2
B

V, (6)

where we introduced a typical magnetic field strength B and a mag-
netic dissipation length scale B, defined again using time averaged
quantities as

2
B ≡

∫
V B2 dV∫

V (∇ × B)2 dV
=2 η

Emag

Dη

that is �
B

2 ≡2 Eη

E�
mag

D�
η

,

(7)

with Emag =
∫

V

B2

2μ
dV, that is E�

mag =
∫

V

B�2

2
dV �.

(8)

This simple reasoning provides the following expression for the
magnetic field strength

B2

μ
∼ fohm 2

B

P

η V
= fohm 2

B

ρ PM

η
, (9)

where PM is the mass power generated by buoyancy forces
PM ≡ P/(ρV) .

The non-dimensional form of eq. (9) is

Lo ∼ fohm
1/2 P�1/2 E−1/2

η �
B, (10)

where Lo ≡ (
2 Emag

�/V �
) 1

2 ≡ B�. Expressing a scaling law for B
(or its non-dimensional form Lo) therefore reduces to relating P and
B to the relevant parameters.

In previous studies B has often not been introduced as such
(but see the review by Roberts & King 2013). Instead it is usually
indirectly evaluated by introducing the magnetic dissipation time
τdiss ≡ Emag/Dη = 2

B/(2η) (see Christensen & Tilgner 2004), or
in non-dimensional form τ �

η ≡ τdiss/τdip, where τ dip ≡ L2/(π 2 η) .

This definition leads to τ �
η = π 2/2 �

B
2 . Besides, the parameter fohm

is a rather complex number, which involves both a priori input and a
posteriori output model properties. It is usually assumed to be order
one in natural dynamos (but see Schrinner 2013), its importance in
scaling laws is discussed in Appendix B.
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3.2 Power generated by buoyancy forces

Christensen & Aubert (2006) established a relation between P� and
a flux-based Rayleigh number Ra�

Q

Ra�
Q ≡ 1

4π ro ri

α g ro �Q

ρ c �3 (ro − ri )2
, (11)

where �Q is the difference between the time-average total heat flow
Q and QTs

d = 4πkTa (J · s−1), which corresponds to the diffusive
heat flow associated to TS(r) = Ta/r + Tb.

They show that

P� ≈ 2π ξ
1 + ξ

(1 − ξ )2
Ra�

Q, (12)

under the assumptions that the volume integral of the realized tem-
perature gradient can be approximated by its conductive counter-
part. The demonstration requires in particular fixed temperature
boundary conditions. Relation (12) is well verified for the numerical
database used in this study. That is why in the following numerical
analysis of scaling laws, the parameter P� will be replaced by Ra�

Q

with a pre-factor of 7.03 determined by the geometry via the aspect
ratio ξ .

It is important to stress that Ra�
Q is an output parameter, and

cannot be controlled a priori when using fixed temperature bound-
ary conditions. It can however be related to the classical Rayleigh
number, which is a control parameter of the problem. Indeed, intro-
ducing the Nusselt number Nu ≡ Q/QTs

d , which can be rewritten
as Nu = Qd(ro)/(4πkTa) under the statistically steady assumption,
relation (11) becomes

Ra�
Q = E3 Pr−2 Ra (Nu − 1) . (13)

The Ra�
Q parameter can not be controlled in the problem because

it is related to the output parameter Nu. Its value is zero at the onset
of convection (Nu = 1).

Note that Ra�
Q Nu/(Nu − 1) would be an input control parameter

in the case of imposed heat flux boundary conditions. The construc-
tion of Ra�

Q would however still involve, even with such boundary
conditions, measurements of the Nusselt number, because the tem-
perature difference across the shell becomes a measured quantity.

3.3 Role of the magnetic dissipation length scale �B

In the numerical database used in this paper, the dissipation length
scale �

B , calculated using eq. (7), varies between 0.02 and 0.10.
These values are obviously smaller than those corresponding to
the pure dipole decay in the absence of motions τ �

η = 1/2, that
is �

B = 1/π 	 0.30. Besides, the range of variation of �
B is less

than one order of magnitude. Thus, as a first approximation, the
variations of �

B can be neglected, namely it can be set to a constant
in eq. (10). Using the relation (12), eq. (10) becomes under this
assumption

Lo ∼ fohm
1/2Ra�

Q
1/2 E−1/2

η . (14)

Its application to the 102 dynamos database is represented in Fig. 1,
and yields the relative misfit χ rel = 0.433. Relation (14), which
simply corresponds to the energy balance between production and
dissipation with B approximated as a constant, already provides
a good fit to the numerical data. This implies that empirical fits
of the magnetic field strength previously obtained in the literature
mainly reflect this simple balance between energy production and
dissipation, combined with an improved description of the magnetic
dissipation B than a simple constant, which is however not essential.

Figure 1. The Lorentz number corrected for the relative fraction of Ohmic
dissipation versus a combination of the flux-based Rayleigh number, the
Ekman number and the magnetic Prandtl number: eq. (14). This simple
scaling law only reflects the statistical balance between energy production
and dissipation, combined with a constant B. Points correspond to the full
102 dynamos database, open squares indicate the subset used in Christensen
& Aubert (2006).

The statistical balance between both terms of the right-hand side
of the dimensional form of the induction eq. (2) yields to uB/ ∼
ηB/2

B , where we introduced a typical velocity field strength u, and
 has the dimension of a length scale which depends on correlations
between the norm and direction of u and B. The length scales B

and  are thus related by

B ∼ η1/2 u−1/2 1/2, (15)

which can be normalized as

�
B ∼ Rm−1/2 �1/2

, or �
B ∼ E1/2

η Ro−1/2 �1/2
, (16)

where Rm is the magnetic Reynolds number, and Ro is the Rossby

number, defined as Ro ≡ (2 Ekin
�/V �)

1
2 ≡ u�,

with Ekin ≡
∫

V

ρ u2

2
dV, that is E�

kin ≡
∫

V

u�2

2
dV �.

(17)

The magnetic dissipation length scale B is thus an output param-
eter, in so far as it is related to both the characteristic velocity u
of the flow (measured by Ro or Rm) and the length scale  (see
Appendix C1).

3.4 Existing scaling laws for the magnetic field strength
and their physical interpretation

Christensen & Aubert (2006) introduced two seminal scaling laws

Lo ∼ fohm
1/2 Ra�

Q
0.34

, (18)

and its optimised form

Lo ∼ fohm
1/2 Ra�

Q
0.32 Pm0.11 . (19)

Their application to the 102 dynamos database is represented in
Fig. 2, and yields the relative misfits χ rel = 0.256 and χ rel = 0.152,
respectively. The corresponding assumption on the magnetic dissi-
pation length scale �

B is detailed in Appendix C2. It respectively
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Figure 2. The Lorentz number corrected for the relative fraction of Ohmic dissipation versus a combination of the flux-based Rayleigh number and the
magnetic Prandtl number, as proposed by Christensen & Aubert (2006): (a) relation (18), (b) relation (19). Blacks points correspond to the 102 dynamos
database, open squares indicate the subset of data used in Christensen & Aubert (2006).

Figure 3. The magnetic dissipation length scale versus a combination of the flux-based Rayleigh number, the Ekman number and the magnetic Prandtl number,
as implied by Christensen & Aubert (2006) results (relations 20). Black points correspond to the full 102 dynamos database, open squares indicate the subset
used in Christensen & Aubert (2006).

yields

�
B ∼ Ra�

Q
−0.16 E1/2

η , and �
B ∼ Ra�

Q
−0.18 E1/2 Pm−0.39,

(20)

which are represented in Fig. 3 (see Appendix C2 for discussion).
Relation (18) and its optimized form (19) are empirical laws ob-

tained using numerical experiments. The physical interpretation of
relation (18), as provided by Christensen & Aubert (2006), is based
on two assumptions: the empirical scaling law for the magnetic dis-
sipation time τ �

η ∼ Rm−1 (Christensen & Tilgner 2004), which is
equivalent to assuming � ∼ 1 (see Appendix C1), and their em-
pirical fit Ro ∼ Ra�

Q
0.41 (eq. 30 in Christensen & Aubert 2006).

Using eq. (16), these two assumptions provide �
B ∼ Ra�

Q
−0.21 E1/2

η .
This last expression can then be injected in eq. (10), to yield
Lo ∼ fohm

1/2 Ra�
Q

0.29. Thus, their demonstration leads to an expo-
nent of Ra�

Q equal to 0.29, which is only slightly lower than their
optimal exponent 0.34 in (18).

Christensen (2010) proposed a modified interpretation: while re-
taining the assumption � ∼ 1, he replaced the scaling law for Ro by
the one resulting from mixing length theory (balance between inertia
and buoyancy). This theory, usually applied for turbulent convec-
tion in stars (Stevenson 1979; Kippenham & Weigert 1990), pro-
vides Ro ∼ Ra�

Q
1/3. It leads to Lo ∼ fohm

1/2 Ra�
Q

1/3, which is closer

to the original fit (18) obtained by Christensen & Aubert (2006).
Instead, Jones (2011) based his physical reasoning on the inertial
scaling law Ro ∼ Ra�

Q
2/5 (derived from the so-called IAC balance,

see Aubert et al. 2001), and obtained Lo ∼ fohm
1/2 Ra�

Q
0.30. The as-

sumptions of inertial scaling laws for Ro made by both Christensen
(2010) and Jones (2011) however do not seem relevant to dipolar
numerical dynamos (see Section 4.5 of this paper; and Christensen
& Aubert 2006; Soderlund et al. 2012).

More recently, Davidson (2013) studied analytically the asymp-
totic limit expected to be relevant to planetary dynamos. In this
limit, viscosity is negligible, which implies a vanishing viscous dis-
sipation (fohm ∼ 1), and inertial forces do not enter the dominant
forces balance (small Rossby number limit). Davidson’s argument
relies on a dimensional analysis. On the right-hand side of eq. (9),
with fohm = 1, both PM and 2

B/η are assumed to be independent on
�. This implies that B2/(ρμ) only depends on L and PM, and thus

B2

ρ μ
∼ L2/3 PM

2/3, (21)

(see eq. 6 in Davidson 2013). In order to account for viscous effects
in numerical simulations, Davidson (2013) then replaces PM with
fohmPM in (21), which leads to

B2

ρ μ
∼ L2/3 ( fohm PM )2/3, (22)
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Figure 4. The Lorentz number corrected for the relative fraction of Ohmic
dissipation versus a combination of the flux-based Rayleigh number and
the magnetic Prandtl number, as proposed by Davidson (2013), relation
(23). Blacks points correspond to the 102 dynamos database, open squares
indicate the subset of data used in Christensen & Aubert (2006).

(eq. 9 in Davidson 2013). It can be rewritten in its non-dimensional
form as

Lo ∼ fohm
1/3 Ra�

Q
1/3

. (23)

Note that relation (23) is based on physical considerations valid
for the Earth’s core but not necessarily realized in direct numeri-
cal simulations (see Appendix D). It is similar to (18) except for
the exponent of fohm. The importance of this measured quantity in
the efficiency of the power based scaling laws is investigated in
Appendix B. Its application to the 102 dynamos database is repre-
sented in Fig. 4, and yields a relative misfit χ rel = 0.286.

We discussed above three scaling laws proposed for the mag-
netic field strength primarily as a function of the available power
generated by buoyancy forces and corresponding to eqs (18), (19)
and (23). Their application to our dynamos database is represented
in Figs 2 and 4. Note that extending the 65 dynamos database of
Christensen & Aubert (2006) to the 102 dynamos database provided
by U. Christensen and used in the present paper, leads to a lower
quality fit for the magnetic field amplitude (compare figs 8–9 in
Christensen & Aubert 2006, with Figs 2a and b in this paper). The
three relations offer a good description of the available numerical
data, with relative misfits between 0.15 and 0.30. The best one is
naturally relation (19), since it involves a supplementary parameter
Pm compared to scaling laws (18) and (23).

It is interesting to compare these three relations with the most
simple form which stems from the energy balance between produc-
tion and dissipation and the assumption that B is constant (domi-
nant dipole field). This expression is represented in Fig. 1 (see also
eq. 14). The relative misfit is only improved by some 50 per cent
from this last relation to relations (18), (19) and (23) which all
attempt to a finer description of the magnetic dissipation length
scale. The range of variation of B in numerical models is neces-
sarily restricted between the discretisation size and the size L of the
model. The key assumption is thus the statistical balance between
energy production and dissipation, which is bound to work for any
statistically steady dynamo (as illustrated in Fig. 1). This explains
why the power based scaling law (18) was found to work with

different prefactors for dipolar and multipolar dynamos, despite of
their different induction mechanisms (Christensen 2010; Schrinner
et al. 2012).

4 P R E D I C T I V E S C A L I N G L AW S F O R
T H E M A G N E T I C F I E L D S T R E N G T H

Power based scaling laws, discussed in the previous section, properly
describe the numerical database. However they only relate together
measured quantities. We now want to express scaling laws which
only involve input parameters on the right-hand side. Such scaling
laws will be referred to as ‘predictive’ in the sense that they es-
timate the strength of a measured quantity, say the magnetic field
strength, as a function of input parameters only (i.e. parameters
that explicitely enter the governing equations), and can therefore
be used before any simulation is performed (as opposed to scaling
laws involving measured quantities such as Ra�

Q and fohm).

4.1 Control parameters

Only four non-dimensional parameters can be introduced in the
governing equations (1–3). In our formulation, these are the Ekman
number E, the Prandtl number Pr, the magnetic Prandtl number
Pm and the Rayleigh number Ra (see Section 2). According to the
Buckingham π theorem, any additional non-dimensional quantity,
for example the Elsasser number � ≡ Lo2Pm/E, can therefore be
expressed as a function of the above four non-dimensional control
parameters. The choice of non-dimensional parameters is however
non-unique (for example, the Roberts number q = κ/η could be
used instead of the magnetic Prandtl number Pm = ν/η).

Stelzer & Jackson (2013) opened the way to a predictive scaling
by expressing Nu − 1, Ro and Lo/fohm

1/2 as a function of Ra instead
of Ra�

Q (see their section 5). Their approach however is bound to fail
for small values of Ra as all these measured quantities obviously
vanish below the onset of convection or dynamo action.

Instead of using the Rayleigh number as control parameter, it is
thus natural to introduce the distance to an instability threshold. We
thus introduce Rac and Rad, which respectively correspond to the
onset of convection and dynamo action (see Appendix E for Rad).
The measured quantities Nu − 1 and Ro are expected to vanish at
the onset of convection Ra = Rac and Lo at the onset of dynamo
action Ra = Rad .

The quantity Ra − Rac therefore provides a natural control pa-
rameter for hydrodynamic quantities such as Nu − 1 and Ro. This
control parameter, even though natural, is however biased because
of the strong dependence of the critical Rayleigh number Rac on
E and Pr. This dependence, first formulated and investigated by
Chandrasekhar (1961) in the cartesian geometry, has been exten-
sively studied. Especially, Roberts (1968) then Busse (1970) studied
the limit E 
 1 in a spherical geometry. In a perturbative cylindric
model for a uniformly heated fluid, Busse (1970) proposed

Rac ∼ E−4/3

(
Pr

1 + Pr

)4/3

. (24)

This solution, valid in the limit of asymptotic Ekman numbers, is
consistent with several other studies: for example, Carrigan & Busse
(1983) (experimental convection study in a differentially heated
spherical shell), Jones et al. (2000) (uniformly heated fluid in a
sphere), Takehiro et al. (2002) (fixed heat flux boundary conditions),
Dormy et al. (2004) and Zhang & Liao (2004). It is validated to a
certain extent against the finite Ekman number numerical database
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Figure 5. (a) The critical Rayleigh number for the onset of convection versus the predicted combination of the Ekman number and the Prandtl number (Busse
1970). (b) Parameter range: Rayleigh number in ordinate, critical Rayleigh number for convection in abscissa. (c) The strong correlation in the database between
the Rayleigh number and its distance to the onset of convection. (d) The Rayleigh number versus its normalized distance to the onset of convection. The four
graphs rely on the 102 dynamos database.

used in this paper. The corresponding misfit is χ rel = 0.319 and it
is represented in Fig. 5(a). Note that a dependence on Pr/(1 + Pr)
remains. The optimised scaling law obtained with our database is
Rac 	 17.78 E−1.19 [Pr/(1 + Pr)]0.58, with χ rel = 0.061 (95 per cent
confidence intervals in Table 2): optimized exponents are slightly
weaker (in absolute value) than those predicted by the asymptotic
calculus of Busse (1970), which indicates that these models are still
not in an asymptotic limit.

In practice, the numerical experiments used in this study are
performed for values of Ra of the order of 10 times the critical value
(see Fig. 5b). Indeed, only dynamos with Nu > 2 are considered in
the database (see Christensen & Aubert 2006), on the other hand, for
obvious computational reasons associated with small scale motions,
Ra is never very far from the onset in numerical models. As a result,
the values of Ra are strongly correlated with the values of Rac. It
follows that Ra is in fact close to Ra − Rac: in the numerical
database, Ra ≈ 1.11(Ra − Rac) with a relative misfit χ rel = 0.052
(see Fig. 5c). This last relation, which traduces a bias in the database,
explains why Stelzer & Jackson (2013) obtained satisfying fits of
Ro and Nu − 1 as a function of Ra (without introducing the distance
to the onset of convection).

The strong dependence of Rac on the Ekman number introduces
a very large variation of the control parameter Ra − Rac, spanning

over five orders of magnitude in the numerical database. This is
somewhat fictitious as the parameter Ra/Rac would only vary over
one order of magnitude. We thus introduce R̃ ≡ Ra/Rac and our new
control parameter will thus be R̃ − 1 (as R̃c = 1). This new control
parameter filters out the Ekman and Prandtl number dependences
(the Ekman dependence is highlighted in Fig. 5d).

To measure the distance to the onset of dynamo action, we also
introduce the control parameter R̃ − R̃d , where R̃d ≡ Rad/Rac is a
function of E, Pr and Pm only. Nevertheless, whereas Rac is known
for all numerical experiments in the database provided by U. Chris-
tensen, this is not the case for the critical value at the onset of dy-
namo action Rad. It can be estimated through a linear interpolation
of Lo2 as a function of Ra near the onset of dynamo action (see Ap-
pendix E). Such an estimate could only be performed for seven sets
of E, Pr and Pm in the database (see Table 1), which corresponds to
33 numerical simulations. It is extended to 42 simulations thanks to
nine additional direct numerical simulations extracted from Morin
& Dormy (2009) and corresponding to the set E = 3 × 10−4, Pr = 1
and Pm = 3.

Our four control parameters therefore are: the Ekman number
E, the Prandtl number Pr, the magnetic Prandtl number Pm and
the relative distance to either the onset of convection or of dynamo
action, R̃ − 1 and R̃ − R̃d , respectively.
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Table 1. Estimated values of the Rayleigh num-
ber and of the magnetic Reynolds number, cor-
responding to the onset of dynamo action (see
Appendix E).

E Pr Pm Rad Rmd

3 × 10−4 1 3 6.125 × 105 62.5
1 × 10−4 1 0.5 3.6 × 106 26
1 × 10−4 1 1 2.4 × 106 34
1 × 10−4 10 10 5 × 105 25
3 × 10−5 1 0.25 2.6 × 107 29
3 × 10−5 1 1 1.5 × 107 70
3 × 10−5 1 2.5 1.04 × 107 103
1 × 10−5 1 0.5 8.0 × 107 70
1 × 10−5 1 1 4.7 × 107 68
1 × 10−5 1 2 4.9 × 107 150
3 × 10−6 1 0.1 6.4 × 108 40
3 × 10−6 1 0.5 2.4 × 108 60

4.2 Direct numerical fit versus forces balances

Empirical scaling laws deduced from the multiple linear regression
method applied to numerical data have to be considered carefully
for two main reasons. First, the ranges of some input parameters
are highly correlated, which introduces bias in scaling laws. It is the
case for the Ekman number and the magnetic Prandtl number. The
minimal value of Pm required for dynamo is indeed dependent on
E (see Christensen & Aubert 2006). Fig. 6 represents the range of
Pm as a function of the range of E in the 102 dymanos database
used in this study: the minimal value of Pm varies roughly as E3/4

(Christensen et al. 1999; Christensen & Aubert 2006), although
this cannot be distinguished from E2/3 (as proposed by Dormy &
Le Mouël 2008). As a consequence, the scaling laws obtained via
a direct numerical fit have to be considered carefully. In particular,
biases can occur relating dependences on E and Pm.

The second important limit of the approach based on empirical
scaling laws deals with the restriction of our scaling analysis to
power laws. In particular, the dependence on the Prandtl coefficient
seems more complex than a simple power law. For instance, the
dependence of the critical Rayleigh number Rac on Pr takes the

Figure 6. Correlation in control parameters used in numerical models; the
magnetic Prandtl number is represented as a function of the Ekman number.
The dashed line corresponds to Pmmin = 450 E0.75 (Christensen & Aubert
2006) and the dotted line to Pmmin ∼ E2/3 (Dormy & Le Mouël 2008). This
figure relies on the full 102 dynamos database.

form Pr/(1 + Pr) [see (24) above]. Indeed, a power law expression
would diverge in the limit Pr tends to infinity.

Because of the above limitations, we prefer to guide our derivation
of scaling laws with physical arguments such as forces balances. Our
motivation is to take some distance with empirical fits, and to rely
on the numerical database to validate the proposed scaling laws,
guided by physical arguments.

4.3 Magnetic field strength as a function of the flow
amplitude

A first step in our reasoning consists in expressing the magnetic
field strength as a function of the flow amplitude. In experimental
physics, one usually controls the peak velocity of a flow driven say
by propellers. For this reason, earlier theoretical work often focused
on the relation between the produced magnetic field and the velocity
field. A first approach is to consider dynamos which bifurcate from
a laminar flow. One assumes that in such cases, a dominant balance
exists between the Lorentz force and the viscous force associated
to the flow modification (Petrelis & Fauve 2001).

It yields the equilibrium

Lo2 ∼ E
Ro − Rod

̃� 2
u

, (25)

where Rod corresponds to the Rossby number at the onset of dynamo
action, and the length scale ̃u corresponds to the characteristic
length scale of the flow calculated as the mean scale of the kinetic
energy spectrum (see Christensen & Aubert 2006). This length scale
is very similar to our u introduced in Appendix B1.

Supposing, as do Petrelis & Fauve (2001), that ̃�
u ∼ 1, this leads

in non-dimensional form to

� ∼ (Rm − Rmd ) E, (26)

where Rmd corresponds to the critical value of Rm at the onset of
dynamo action.

While the length scale ̃�
u necessarily varies over a limited range in

the numerical database (see Fig. 7a and the discussion at the end of
Section 3.4), a finer description can be achieved by retaining viscous
effects and neglecting inertial forces. The equilibrium between the
curl of the Coriolis force and the viscous force indeed yields

̃�
u ∼ E1/3 . (27)

This last relation properly describes the database used in the present
paper, as shown in Fig. 7(a) and in King & Buffett (2013) (see also
Roberts & King 2013). The lengthscale ̃�

u clearly depends on E1/3

and not on E1/2, the latter being the typical scale of boundary layers.
Thus, viscous effects play a non-negligible role in the bulk of the
flow. This indicates that present numerical simulations are not in a
dynamical regime relevant to the Earth’s core (see also Soderlund
et al. 2012). The E1/3 scale would represent less than 100 m for
geophysical values. Besides, the mild dependence of ̃�

u E−1/3 on
the Rossby number (see Fig. 7b) shows that the assumption that
inertia is small compared to viscous effects is verified by numerical
models.

If one uses (27) for the length scale ̃�
u in relation (25) (see Fauve

& Petrelis 2007), this yields

� ∼ (Rm − Rmd ) E1/3 . (28)

An alternative forces balance, known as the strong field balance,
and assumed to be valid for the Earth’s core, consists in assuming
a balance between the Lorentz force and the modification of the

 by guest on A
ugust 16, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Predictive scaling laws for rotating dynamos 835

Figure 7. (a) The non-dimensional characteristic length scale ̃�
u as a function of the Ekman number. The dashed line corresponds to ̃�

u ∼ E1/3 (eq. 27) and
the dotted line to ̃�

u ∼ E1/2. (b) The corrected length scale ̃�
u E−1/3 as a function of the Rossby number. Similar graphs can be produced using �

u instead of
̃�

u . This figure relies on the full 102 dynamos database.

Coriolis force. It provides (see Petrelis & Fauve 2001) in non-
dimensional form

� ∼ (Rm − Rmd ) . (29)

Each of the relations (26), (28) and (29) can be tested against the
42 dynamos database (see Fig. 8), and yields the relative misfits
χ rel = 1.438 , χ rel = 0.891 , and χ rel = 2.081, respectively. The
best scaling law fitting the numerical data is therefore (28). It is
consistent with the fact that viscous effects have been shown to play
a non-negligible role in the bulk of the flow in numerical models.

This result can be compared to the output of a direct numerical
fit. The values of the magnetic Reynolds number at the onset of
dynamo action corresponding to seven sets of E, Pr and Pm in the
database have been estimated by a linear interpolation of Lo2 as a
function of Rm (see Table 1 and Appendix E). The multiple linear
regression approach applied to the 42 dynamos database provides
the following scaling law for the Elsasser number � as a function
of (Rm − Rmd) and E (95 per cent confidence intervals given in
Table 3): 1

� 	 10.24 (Rm − Rmd )1.09 E0.52, with χrel = 0.698 . (30)

The physically derived scaling law (28) is consistent with the em-
pirical scaling law (30) for the dependence on (Rm − Rmd). The
optimal exponent of E is larger than the 1/3 value predicted by (28),
and remains to be investigated.

Fig. 10(a) represents relation (28) applied to the 42 dynamos
database in red diamonds, and the same relation, but setting Rmd to
zero in blue squares. The blue points gradually move away from a
linear fit when Rm decreases, as expected (because the approxima-
tion Rm − Rmd 	 Rm worsens). Relation (28) can however then be
applied to the 102 dynamos database, provided that the parameter

1
A direct numerical fit of � as a function of (Rm − Rmd), E, Pm and Pr
yields � 	 0.30 (Rm − Rmd)0.88 E0.12 Pm0.79 Pr−0.82 , with χ rel = 0.301
(see Table 3 and Fig. 9a). The proposed dependence on Pr is not strongly
constrained, since the estimation of the optimal exponent of Pr is only
based on three simulations corresponding to Pr �= 1 (and for all three,
E = 1 × 10−4, Pr = 10, Pm = 10, see Table 1). The proposed dependence
is therefore clearly not robust. The bias between E and Pm in the database
probably accounts for the smaller exponent of E and the extra dependence
on Pm in the above relation compared to (30).

Rmd is dropped (since it is only known for the 42 simulations of the
reduced database). It is represented in Fig. 10(b). As in Fig. 10(a),
the full numerical database appears to follow the proposed scaling
law, except for low values of Rm for which Rmd cannot be neglected.

It is worth noting that relation (28) reveals a dependence of the
magnetic field strength on viscosity, which is geophysically not
realistic. To illustrate this, let us now try to apply this relation to
the Earth’s core. We choose the common estimate value Rm = 103.
The distance to the onset of dynamo action Rm − Rmd can be
estimated by Rm, which leads to an overestimated value of �. We
find � ∼ 10−2, which is an upper bound because Rmd was not
taken into account. It is yet much smaller than its estimated value
for the Earth’s core, expected to be close to unity (Roberts 1988).
This indicates very clearly that available numerical models are not
in the dynamical regime relevant to geodynamo. In other words, the
Earth’s core would simply be out of the range of Fig. 10(a) (with
Rm 	 103, and � E1/3 	 105).

The magnetic Reynolds number is however a measured quantity
in the numerical database. In order to establish a predictive scaling
for the magnetic field strength, it is thus necessary to express the
flow amplitude as a function of control parameters. This is the
purpose of the two next sections.

4.4 Predictive scaling law for the injected power

The definition of the output parameter Ra�
Q involves the efficiency

with which heat is transferred by convection, measured by the Nus-
selt number Nu (see eq. 13). This is a subject of study in itself,
many studies of heat transfer have been performed for rotating
convection. Fig. 11 shows that the numerical data globally corre-
spond to an intermediate regime between the rapidly rotating regime
(Nu = R̃ 6/5, Aurnou 2007; King et al. 2009, 2010) and the weakly
rotating regime (Nu ∼ Ra 2/7, see King et al. 2009). The simple
relation Nu ∼ R̃ provides a good description of the database. Note
that in Fig. 11, a dependence on Pr remains. This could be further
investigated by seeking for a dependence on Pr/(1 + Pr) (instead
of a power law dependence which would lack regularity in the limit
Pr −→ 0 or Pr −→ +∞). As we will however discuss later (see
Section 4.6), the Pr/(1 + Pr) term can be omitted without signifi-
cant loss of quality in describing the present database.
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Figure 8. Scaling laws for the magnetic field strength as a function of the flow amplitude as measured by Rm − Rmd: (a) relation (26), (b) relation (28) and
(c) relation (29). This figure relies on the 42 dynamos database.

Table 2. Optimal scaling laws obtained by the multiple linear regression method, for Rac, Ra�
Q (relation (32) and relation given in the footnote 2), Ro (relation

(36) and relation given in the footnote 3) and Rm (relation given in the footnote 4 and relation (38)) (95 per cent confidence intervals). Crosses indicate that the
corresponding parameter is chosen not to enter the fit. The dashes indicate that the contribution of the corresponding parameter has been found negligible.

Pre-factor Ra�
Q R̃ − 1 E Pm Pr Pr/(1 + Pr) χ rel

Rac 17.779 ± 1.468 × × − 1.193 ± 0.008 × × 0.579 ± 0.030 0.061
Ra�

Q 1.470 ± 0.517 × 1.774 ± 0.064 1.675 ± 0.032 – − 1.557 ± 0.061 × 0.326
Ra�

Q 5.103 ± 1.550 × 1.775 ± 0.041 1.703 ± 0.021 – − 2.124 ± 0.102 1.256 ± 0.208 0.173
Ro 0.589 ± 0.133 0.466 ± 0.018 × − 0.095 ± 0.033 × × × 0.184
Ro 1.103 ± 0.094 0.433 ± 0.006 × – − 0.137 ± 0.015 – × 0.100
Rm 1.535 ± 0.371 × 0.749 ± 0.036 − 0.264 ± 0.020 0.843 ± 0.030 − 0.656 ± 0.035 × 0.147
Rm 2.421 ± 0.547 × 0.757 ± 0.029 − 0.257 ± 0.016 0.857 ± 0.024 − 0.901 ± 0.070 0.528 ± 0.139 0.108

In the available database, the bias Ra ∼ Ra − Rac (see Section 4.1)
allows us to approximate Ra by

(
R̃ − 1

)
Rac in the definition (13) of

Ra�
Q . Injecting (24) and the above simple expression for Nu (which

is admittedly not based on solid physical considerations) yields

Ra�
Q ∼ (R̃ − 1)2 E5/3 Pr−2

(
Pr

1 + Pr

)4/3

. (31)

The corresponding relative misfit when applied to the 102 dynamos
database is χ rel = 0.311 and it is represented in Fig. 12(a). Note that
the dependence on Pr−2 in (31) comes from the definition (13) of
Ra�

Q , whereas that on (Pr/(1 + Pr))4/3 results from the expression
of Rac (relation 24).

Relation (31) can be compared to an optimized empirical fit,
which provides

Ra�
Q 	 5.10 (R̃ − 1)

1.78
E1.70 Pr−2.12

(
Pr

1 + Pr

)1.26

,

with χrel = 0.173, (32)

(95 per cent confidence intervals are given in Table 2). Relation (31)
is therefore close to providing the best fit through the numerical
database.2

The parameter Ra�
Q varies over six orders of magnitude, while

none of the control parameters varies over such a wide range (see
Appendix C2). Fig. 12(b) highlights the strong dependence of Ra�

Q

on the Ekman number explicited in (31). This explains the above
range of variation. The control parameter R̃ − 1 covers a much more
physically realistic range.

2
If the dependence on Pr/(1 + Pr) is omitted, it yields a larger misfit

(χ rel = 0.326), and Ra�
Q 	 1.47 (R̃ − 1)

1.77
E1.68 Pr−1.56 . Both relations

would not be modified if a dependence on Pm was sought (see Table 2).

4.5 Predictive scaling laws for the flow amplitude

Several scaling laws based on different forces balances have been
proposed in the literature concerning the flow amplitude (detailed
in King & Buffett 2013). For simulations near the onset of dynamo
action, the Lorentz force can be expected to be small. Then, bal-
ancing the curl of the buoyancy term with that of the Coriolis force
yields

u� ∼ ̃�−1
u

P�

u�
, (33)

which can be rewritten, using relation (12), as

Ro ∼ ̃�−1/2
u Ra�

Q
1/2

. (34)

Combining (34) and (27) leads to the Viscous–Archimedean–
Coriolis (VAC) scaling proposed by King & Buffett (2013)

Ro ∼ Ra�
Q

1/2 E−1/6 . (35)

Its application to the 102 dynamos database is represented in
Fig. 13(a), with a relative misfit χ rel = 0.201. It can be compared
to the inertial Ro-scalings Ro ∼ Ra�

Q
2/5 (derived from the IAC

balance, see Aubert et al. 2001; Jones 2011) and Ro ∼ Ra�
Q

1/3

(resulting from mixing length theory, see Christensen 2010) (see
Fig. 13b). These three scaling laws provide descriptions of the
database of comparable quality. The scaling law (27) for the length
scale ̃�

u however indicates that the VAC scaling (35) is more relevant
to the present study than inertial scaling laws.

The direct multiple linear approach provides the following op-
timal scaling law expressing Ro as a function of Ra�

Q and E
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Figure 9. Scaling laws provided by direct numerical fits. (a) The Elsasser number versus the flow amplitude (see footnote 1). (b) The magnetic Reynolds
number versus the normalized distance to the onset of convection (see footnote 4). (c) Predictive scaling law for the Elsasser number versus the normalized
distance to the onset of dynamo action (relation 40). Squares correspond to the 102 dynamos database, black points to the 42 runs of the reduced database.

Table 3. Optimal scaling laws obtained by the multiple linear regression method, for � as a function of (Rm − Rmd) (relation
(30) and relation given in footnote 1) and (R̃ − R̃d ) (relation 40) (95 per cent confidence intervals).

Pre-factor Rm − Rmd R̃ − R̃d E Pm Pr χ rel

� 10.243 ± 8.619 1.091 ± 0.157 × 0.516 ± 0.132 × × 0.698
� 0.305 ± 0.212 0.879 ± 0.087 × 0.119 ± 0.101 0.787 ± 0.141 −0.820 ± 0.174 0.301
� 0.351 ± 0.210 × 0.796 ± 0.062 −0.072 ± 0.071 1.490 ± 0.096 −1.491 ± 0.144 0.233

(95 per cent confidence intervals given in Table 2) 3 :

Ro 	 0.59 Ra�
Q

0.47 E−0.10, with χrel = 0.184 . (36)

Replacing the parameter Ra�
Q by its expression (31) in eq. (35)

yields

Rm ∼ (R̃ − 1) E−1/3 Pm Pr−1

(
Pr

1 + Pr

)2/3

. (37)

This relation is essential in order to establish a predictive scaling law
for the magnetic field strength, whereas relations (31) and (35) are
only intermediate steps in the reasoning. Besides, the dependence of
Rm on E−1/3 counterbalances the dependence of � on E1/3 in (28),
and thus removes the dependence of � on viscosity in its predictive
form. The scaling law (37) applied to the 102 dynamos database
is represented in Fig. 14, with a relative misfit χ rel = 0.253. The
role of both terms Pr−1 and [Pr/(1 + Pr)]2/3 is illustrated in Fig. 15:
the term Pr/(1 + Pr)2/3 allows to correct the data corresponding to
weak values of Pr. The non-negligible dependence on Pr/(1 + Pr)
is consistent with previous studies of convection which established
a dependence of the velocity amplitude on Pr more complex than
a simple power law dependence (e.g. Schlüter et al. 1965; Tilgner
1996).

Finally, note that relation (37) can be compared to the optimized
fit to the available data. A direct numerical fit provides 4

Rm 	 2.42
(
R̃ − 1

)0.76
E−0.26Pm0.86Pr−0.90

(
Pr

1 + Pr

)0.53

,

with χrel = 0.108, (38)

3
A direct numerical fit for Ro as a function of Ra�

Q , E, Pm and Pr yields

Ro 	 1.10 Ra�
Q

0.43 Pm−0.14, with χ rel = 0.100 (95 per cent confidence
intervals given in Table 2). The role of E and Pr are found to be negligible.
However the bias in the database (see Section 4.2) renders the dependence
on Pm unreliable (as E and Pm are correlated in the database).

4
Omitting the dependence on Pr/(1 + Pr) provides a larger mis-

fit (χ rel = 0.147) and Rm 	 1.54
(
R̃ − 1

)0.75
E−0.26Pm0.84Pr−0.66 (see

Fig. 9b and Table 2).

(the 95 per cent confidence intervals are provided in Table 2). The
exponents in relations (37) and (38) match to within 20 per cent.

4.6 Predictive scaling law for the magnetic field strength

Replacing the flow amplitude in relation (28) by its expression (37)
yields the following predictive scaling law

� ∼ (R̃ − R̃d ) Pm Pr−1

(
Pr

1 + Pr

)2/3

. (39)

The direct numerical fit provides in the form of pure power laws

� 	 0.35 (R̃ − R̃d )
0.80

E−0.07 Pm1.49 Pr−1.49,

with χrel = 0.233, (40)

(see Fig. 9c and Table 3 for 95 per cent confidence intervals). The
dependence on the Ekman number is here negligible. Besides, we
used here the reduced 42 dynamos database for which R̃d can be
estimated, the coefficients based on a direct numerical fit are there-
fore weakly constrained. In particular Pr does not vary much in this
subsample. Despite of this, the agreement between both expressions
is remarkably good, except for a larger exponent of Pm for the latter,
which remains to be investigated.

The application of relation (39) to the 42 dynamos database
is represented in Fig. 16(a) in red diamonds. The same expres-
sion approximating R̃d to unity is plotted using blue squares.
As expected, the quality of the approximation decreases with R̃.
Finally, Fig. 16(b) corresponds to the application of relation (39)
to the full database, approximating the unknown R̃d contribution
to unity.

Finally, in order to assess the role of the two terms Pr−1 and
[Pr/(1 + Pr)]2/3 in relation (39), we compare in Fig. 17 the im-
provements obtained by each contribution of Pr. It highlights the
important role of the Pr−1 term. The role of the Pr/(1 + Pr) term
in the description of the available numerical database is marginal
(compare Figs 16b and 17b).
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Figure 10. Physically derived relation for the magnetic field strength as a function of Rm − Rmd. (a) Relation (28) (red diamonds), and the same relation but
setting Rmd to zero (blue squares), both applied to the 42 dynamos database. (b) Relation (28) dropping the unknown Rmd contribution, applied to the full
(blacks points) and reduced (blue squares) database. The dashed line corresponds to relation (28).

Figure 11. The Nusselt number versus the Rayleigh number normalized by
its critical value. The dotted line corresponds to Nu ∼ R̃ 6/5 and the dashed
line to Nu ∼ R̃. The Prandtl number is indicated by the colour (as in Fig. 5a).
This figure is based on the 102 dynamos database.

Thus, instead of the power based scaling law proposed by
Christensen (2010), which can be rewritten as

� ∼ fohm Ra�
Q

2/3 E−1 Pm, with χrel = 0.452, (41)

and which involves measured quantities (fohm and Ra�
Q), we propose

the simple relation (39), which can be reformulated as

� ∼ (R̃ − R̃d ) q

(
Pr

1 + Pr

)2/3

, with χrel = 0.516 . (42)

The Pr/(1 + Pr) dependence comes from the asymptotic expression
of the critical Rayleigh number at the onset of convection (24). The
moderate variation of Pr in the database implies that it can be omitted
without significant loss in the quality of the fit (see Fig. 17b). This
provides an even simpler scaling law, valid for the available range
of Pr

� ∼ (R̃ − R̃d ) q, with χrel = 0.512 . (43)

It involves input parameters only, and its derivation was guided by
physical arguments. Besides, it is worth noting that (43) as well as
(42) imply a dependence of the magnetic field amplitude on the

rotation rate �. This contradicts earlier claims of saturation values
independent on the rotation rate.

Relations (41) and (43) are applied to a reduced 33 dynamos
database (for which all quantities involved in both relations are
available) and represented in Fig. 18. The relative misfits given
in (41), (42) and (43) are computed on the basis of this reduced
database.

Note that the power based relation (41) does not involve any
distance to the onset of dynamo action. Indeed, the parameter Ra�

Q

does not vanish at the onset of dynamo action [it vanishes at the onset
of convection, see eq. (13)]. The parameter fohm however corrects
this issue, as it tends to zero at the onset of dynamo action.

5 C O N C LU S I O N

In this study, we combine a numerical approach, which consists
in establishing scaling laws for quantities of interest thanks to a
multiple linear regression method applied to numerical data under
the approximation of power laws, and a physical approach based
either on energetics or on forces balances. Our numerical approach
is based on a 102 dynamos database (U. Christensen) correspond-
ing to Boussinesq fully convecting (Nu > 2) and dipolar dynamo
models.

In a first phase, we focus our attention on scaling laws for the
magnetic field strength as a function of the injected power by buoy-
ancy forces, quantified by the flux-based Rayleigh number Ra�

Q .
We show that the scaling laws previously obtained in the literature
mainly correspond to the simple writing of the energy balance be-
tween production and dissipation, which is necessarily valid for any
dynamo in statistical equilibrium. Such power based scaling laws
are thus very general and applicable to any dynamo in statistical
equilibrium irrelevantly of the dynamo mechanism (e.g. Schrinner
et al. 2012).

The description of the magnetic dissipation length scale B deter-
mines the quality of the approximation. Assuming a constant value
for B already provides a very good description of the numerical
database. Improved fits can be obtained based on finer assumptions
for B. However, none of the proposed scaling laws corresponds
to a realistic physically based relation to describe the numerical
database (see Section 3.4).
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Figure 12. (a) Validation of relation (31) expressing the flux-based Rayleigh number as a function of the normalized distance to the onset of dynamo.
(b) The flux-based Rayleigh number versus the normalized distance to the onset of convection. The Ekman number is indicated by using different symbols (as
in Fig. 5d). This figure is based on the full 102 dynamos database.

Figure 13. (a) The Rossby number as a function of the flux-based Rayleigh number (a) based on the VAC scaling (relation 35) (b) on the IAC scaling (dotted
line, χ rel = 0.237) and on the scaling resulting from mixing length theory (dashed line, χ rel = 0.431). Both graphs rely on the full 102 dynamos database.

Figure 14. The resulting predictive scaling law for the magnetic Reynolds
number as a function of the normalized distance to the onset of convection
(relation 37). This figure relies on the full 102 dynamos database.

The second part of our study aims at establishing predictive scal-
ing laws (i.e. as a function of input parameters only) for the magnetic
field strength. Our reasoning is guided by physical arguments such
as forces balances, and the numerical database is only used to val-
idate the proposed relations. Indeed, we have shown that scaling
laws obtained through a direct numerical fit can be biased by the
numerical sample. It is in particular the case for the Ekman and
magnetic Prandtl numbers, whose ranges are strongly correlated in
the database. The flux-based Rayleigh number Ra�

Q , which is a mea-
sured quantity, is replaced either by the normalized distance of the
Rayleigh number to the onset of convection (denoted as R̃ − 1) or
by the normalized distance to the onset of dynamo action (measured
by R̃ − R̃d ). This last quantity is unfortunately only available for a
subset of the numerical database.

Our four control parameters are the Ekman number, the Prandtl
number, the magnetic Prandtl number and the relative distance to the
onset of convection (resp. dynamo action). Our reasoning follows
four steps.

The first step of the reasoning provides a scaling law for the
magnetic field strength as a function of the distance to the onset of
dynamo in term of flow amplitude, which is � ∼ (Rm − Rmd) E1/3

and which matches numerical data. It is deduced from the balance
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Figure 15. Simplified expressions for Rm testing the Pr dependence. The magnetic Reynolds number as a function of the normalized distance to the onset of
convection, eq. (37) (a) with no correction on Pr and Pr/(1 + Pr) (b) with the correction on Pr−1 only. Both graphs rely on the 102 dynamos database.

Figure 16. Physically derived predictive scaling law for the magnetic field strength as a function of R̃ − R̃d . (a) Relation (39) (red diamonds), and the same
relation but approximating R̃d to unity (blue squares), both applied to the 42 dynamos database. (b) Relation (39) approximating the unknown R̃d contribution
to unity, applied to the full (blacks points) and reduced (blue squares) database. The dashed line corresponds to relation (39).

Figure 17. Test of the Pr dependence in the predictive scaling law (39) applied to the 102 dynamos database approximating the unknown R̃d contribution to
unity (a) with no correction on Pr and Pr/(1 + Pr) (b) with the correction on Pr−1 only. The dashed line in (a) and (b) corresponds to the scaling law (39).
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Figure 18. Comparison of the earlier power based scaling law (Christensen 2010) and our proposed predictive scaling law for the magnetic field strength:
relations (a) (41) and (b) (43). Both graphs rely on a reduced 33 dynamos database for which R̃d and fohm are available.

between the Lorentz force and the viscous force associated to the
flow distorsion (Fauve & Petrelis 2007).

The second one consists in establishing the link between the
injected power (measured by Ra�

Q) and R̃ − 1, by using the definition
of Ra�

Q , the relation between Nu and R̃ (e.g. King et al. 2010) and
previously established dependences of the critical Rayleigh number
at the onset of convection on the Ekman and Prandtl numbers (Busse
1970).

The third step deals with the derivation of a scaling law for the
flow amplitude. The Viscous–Archimedean–Coriolis scaling (King
& Buffett 2013) matches the numerical data. Especially, the charac-
teristic velocity length scale of the flow depends on E1/3 in numerical
simulations, which proves that viscous effects play a non-negligible
role in the bulk of the flow. The role of inertia is shown to be negli-
gible on this length scale for dipolar dynamos compared to that of
viscous effects.

Finally, in a fourth step, the combination of the aforesaid results
leads to a surprisingly simple predictive scaling law, that is � ∼
(R̃ − R̃d ) q [Pr/(1 + Pr)]2/3, which involves input parameters only,
contrary to previous published scaling laws, and which properly
describes available numerical data (as stressed in the text, the Pr
dependence is not tested by the database and can be omitted here
without loss). This scaling law relies on the dominant forces balance
in the numerical dynamos. Contrary to power based scaling laws, it
is applicable in the parameter range covered by this study, but will
not be satified in general (e.g. if inertial forces become significant).
Besides its predictive power, it also provides information on the
underlying forces balance at work in the dynamo simulations.

Introducing predictive scaling laws, based on control parameters
only, allows to underline two important ideas. First, the present
numerical models do not operate in a dominant forces balance
relevant for the geodynamo. Indeed, viscous effects are shown to
be essential and extrapolation to geophysically relevant parame-
ters produces strongly underestimated amplitudes for the magnetic
field. Secondly, it allows to demonstrate the clear dependence of the
magnetic field strength on the rotation rate �.
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A P P E N D I X A : T H E M U LT I P L E L I N E A R
R E G R E S S I O N A P P ROA C H

As in previous studies (Christensen & Tilgner 2004; Christensen
& Aubert 2006; Stelzer & Jackson 2013), we restrict our scaling
analysis to power laws of the form

Y ∝ α

p∏
j=1

X j
β j , (A1)

where Y is the n-dimensional vector of output data which we want
to fit, and Xj are the p n-dimensional predictor variables. Taking
the logarithm of (A1) transforms the model in a multiple linear
regression problem

log(Y) = β0 + β1 log(X1) + β2 log(X2) + · · · + βp log(Xp) + ε.

(A2)

in which β0 = log(α), and ε in an n-dimensional vector measuring
the misfit.

In the following, log(Y) is replaced by Ỹ and log(Xj) by X̃j for
clarity. The system of n equations (A2) can be represented in matrix
notation as

Ỹ = X̃ β + ε, (A3)

where X̃ is referred to as the design matrix
[
IX̃1 . . . X̃p

]
and β is

a (p + 1)-dimensional vector containing the whole set of regres-
sion coefficients. The vector β can be estimated using least square
estimates. The misfit ε is assumed to follow a Gaussian centred
distribution with a variance σ which is assumed to be a constant.
The corresponding fitted model is

ˆ̃Y = X̃ β̂, (A4)

where

β̂ = (
X̃t · X̃

)−1 · X̃t · Ỹ . (A5)

The variance σ can be estimated by the unbiased estimator σ̂ defined
as

σ̂ 2 = 1

n − p − 1
‖ε̂‖2, where ε̂ = Y − ˆ̃Y . (A6)

As a measure of misfit between data and fitted values, we use as in
Christensen & Aubert (2006) the mean relative misfit to the original
data yi [i ∈ (1, n)], defined as

χrel =
√√√√ 1

n

n∑
i=1

(
yi − ŷi

yi

)2

. (A7)

The estimator β̂ is unbiased and its covariance matrix can be esti-
mated by

σ̂
2
β̂

= σ̂ 2
(
X̃t · X̃

)−1
, (A8)

which is a (p + 1) × (p + 1) matrix. An estimation of the variance
σ̂β̂ j

of the β̂ j exponent [j ∈ (0, p)] is

σ̂β̂ j
= σ̂

√[(
X̃t · X̃

)−1
]

j j
, (A9)

and the estimator (β̂ j − β j )/σ̂β̂ j
follows a Student distribution (Stu-

dent 1908; Fisher 1925) with (n − p − 1) degrees of freedom. For
the analysis performed in this paper, (n − p − 1) ≈ 100. In that
case, the coefficient β j is comprised in the 95 per cent confidence
interval

β j = β̂ j ± 2 σ̂β̂ j
. (A10)

This method provides the following power law for y

y = exp(β̂0 ± 2 σ̂β̂0
)

p∏
j=1

x j
β̂ j ± 2 σ̂

β̂ j , (A11)

which can be rewritten as

y =
[
exp(β̂0) cosh(2 σ̂β̂0

) ± exp(β̂0) sinh(2 σ̂β̂0
)
] p∏

j=1

x j
β̂ j ± 2 σ̂

β̂ j .

(A12)

In this paper, the confidence intervals are provided in separated
tables.

In a geometric interpretation where the essential quantity is re-
ported in ordinate and the optimal combination of fitting parameters
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in abscissa, the mean relative misfit χ rel measures the relative ordi-
nate distance between observations and estimations, without taking
the abscissa distance into account. That is why its use is restricted to
comparisons of fits for the same quantity y. Besides, the mean rel-
ative misfit χ rel is obviously expected to decrease with the number
p of predictor variables. As the system of equations (1–3) is gov-
erned by four non-dimensional parameters (Ra, E, Pm and Pr), the
maximum number pmax of independent predictor variables is equal
to 4. For further discussions on fitting errors, we refer the reader to
Stelzer & Jackson (2013).

A P P E N D I X B : RO L E O F T H E F R A C T I O N
O F O H M I C D I S S I PAT I O N f ohm I N
E M P I R I C A L S C A L I N G L AW S F O R T H E
M A G N E T I C F I E L D S T R E N G T H

We stress here the pifalls of direct numerical fits, free from physical
insight, by showing that different a priori hypothesis on fohm yield
contradictory results.

B1 Power based scaling laws derived from multiple linear
regressions

As noted in Section 3.1, fohm is not at all a trivial parameter, as it
involves both controlled and measured quantities. Indeed with our
notations, eq. (5) can be rewritten as

fohm =
(

1 + Ro2

Lo2

�
B

2

�
u

2
Pm

)−1

, (B1)

where we introduced a kinematic dissipation length scale u

(�
u = u/L), defined using time averaged quantities as

2
u ≡

∫
V u2 dV∫

V (∇ × u)2 dV
= 2 ν

Ekin

Dν

. (B2)

The main distinction between the scaling laws (18) and (23) re-
spectively proposed by Christensen & Aubert (2006) and Davidson
(2013) relies on the different exponent of fohm.

First considering the best empirical scaling law for the magnetic
field strength in our database, ignoring the fohm parameter, we get

Lo	0.16 Ra�
Q

0.32 E−0.11 Pm0.30 Pr−0.18, with χrel = 0.194,

(B3)

(see Fig. B1a). Note that in the above expression, the right-hand-side
vanishes at the onset of convection and not at the onset of dynamo

action. This expression is therefore obviously not valid close to the
onset of dynamo action.

The balance between energy production and dissipation provides
an exponent 1/2 for fohm (see Section 3.1). The best power law
approximation for Lo as a function of Ra�

Q obtained by setting the
exponent of fohm to 1/2 is then

Lo 	 0.78 fohm
1/2 Ra�

Q
0.32

, with χrel = 0.256, (B4)

whereas allowing for a dependence on Pm leads to

Lo 	 0.64 fohm
1/2 Ra�

Q
0.31 Pm0.17, with χrel = 0.141 . (B5)

These two expressions correspond to the fits (18) and (19) of
Christensen & Aubert (2006). The exponents do not exactly match
because the numerical database used here is somewhat larger. How-
ever, the two latter relations are rigorously recovered if we apply
our algorithm to the 65 dynamos numerical database of Christensen
& Aubert (2006). This validates the multiple linear regression ap-
proach used in this paper. The role of the parameter Pr is found to
be negligible using the 65 dynamos numerical database of Chris-
tensen & Aubert (2006). But the 102 dynamos database used here
contains more simulations corresponding to Pr �= 1 than the earlier
Christensen & Aubert (2006) database (32 versus 17). Considering
an additional dependence on Pr yields

Lo 	 0.56 fohm
1/2 Ra�

Q
0.30 Pm0.20 Pr−0.11, with χrel = 0.121,

(B6)

(see Fig. B1b), where the dependence on Pr is not negligible. On the
contrary, the contribution of the Ekman number appears negligible
(taking E into account only provides a very minor improvement of
χ rel and a small power of E).

It is however natural in a fitting approach to let the exponent fohm

be determined by the multiple linear regression approach. Moreover,
as noted above, the fohm parameter is usually argued to be equal to
unity in planetary dynamos. The best power law with the above
parameters is

Lo	0.66 fohm
0.61 Ra�

Q
0.31

Pm0.19 Pr−0.08, with χrel = 0.117,

(B7)

(see Fig. B1c). The contribution of E is negligible, this last relation
thus involves five non-dimensional parameters only, which corre-
sponds to the maximum number of independent parameters in the
problem (see Appendix A). Table B1 gathers the fitted values cor-
responding to equations (B3), (B4), (B5), (B6) and (B7) including
their 95 per cent confidence interval. The exponents in relation (B7)

Figure B1. The Lorentz number versus a combination of flux-based Rayleigh number, Ekman number, Prandtl number, magnetic Prandtl number (a) with no
fohm dependence (eq. B3), (b) with an additional fixed fohm

1/2 factor (eq. B6) and (c) an additional fohm dependence with an optimized exponent (eq. B7). This
figure relies on the 102 dynamos database.

 by guest on A
ugust 16, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


844 L. Oruba and E. Dormy

Table B1. Optimal scaling laws obtained by the multiple linear regression method, for Lo and fohm (95 per cent confidence intervals): relations (B3), (B4),
(B5), (B6), (B7) and (B8).

Pre-factor fohm Ra�
Q E Pm Pr χ rel

Lo 0.157 ± 0.050 × 0.318 ± 0.027 −0.111 ± 0.053 0.295 ± 0.039 −0.176 ± 0.056 0.194
Lo 0.777 ± 0.168 1/2 0.322 ± 0.017 × × × 0.256
Lo 0.638 ± 0.080 1/2 0.313 ± 0.009 × 0.167 ± 0.023 × 0.141
Lo 0.561 ± 0.063 1/2 0.302 ± 0.009 – 0.197 ± 0.021 −0.106 ± 0.033 0.121
Lo 0.661 ± 0.114 0.605 ± 0.091 0.309 ± 0.010 – 0.186 ± 0.023 −0.080 ± 0.039 0.117
fohm 0.073 ± 0.026 × – −0.170 ± 0.030 0.180 ± 0.042 −0.178 ± 0.054 0.249

Table B2. 95 per cent confidence intervals associated to exponents in the dimensional scaling laws for the magnetic field strength corresponding to relations
(B9), (B10) and (B11).

P � L ρ ν η κ χ rel

B/μ1/2 0.318 ± 0.027 0.157 ± 0.134 −0.368 ± 0.241 0.182 ± 0.027 0.008 ± 0.142 −0.295 ± 0.039 0.176 ± 0.056 0.194
B/μ1/2 0.302 ± 0.009 0.094 ± 0.027 −0.510 ± 0.045 0.198 ± 0.009 0.091 ± 0.054 −0.197 ± 0.021 0.106 ± 0.033 0.121
B/μ1/2 0.309 ± 0.010 0.073 ± 0.030 −0.545 ± 0.050 0.191 ± 0.010 0.106 ± 0.062 −0.186 ± 0.023 0.080 ± 0.039 0.117

are not significantly different from those in relation (B6). In partic-
ular, the 95 per cent confidence interval associated to the optimized
value 0.61 of the exponent of fohm in (B7) includes the value 1/2
provided by the energy balance.

The relative error on the exponents of Ra�
Q , Pm and fohm is in

general moderate (less than 15 per cent). The error for the estimation
of the exponent of Pr is more important (between 30 per cent and
50 per cent): the distribution of the control parameter Pr in our data
set, although wider than in the data set used in Christensen & Aubert
(2006), is indeed not wide enough to establish a clear dependence
on Pr. The parameter E appears only in relation (B3) where the
output parameter fohm is not taken into account, with a relative error
of 50 per cent for the corresponding exponent.

Finally, note that eqs (B3), (B6) and (B7) can be related by
introducing the best power law approximation for fohm as a function
of Ra�

Q , E, Pm and Pr, that is

fohm 	 0.07 E−0.17 Pm0.18 Pr−0.18, with χrel = 0.249, (B8)

where the contribution of Ra�
Q is found to be negligible (95 per cent

confidence intervals in Table B1). The high corresponding relative
misfit (25 per cent) reveals that the dependence of fohm on other
parameters can not be reliably approximated by a simple power law.

B2 Extrapolation to natural dynamos

The results of Appendix B1 deserve careful analysis. Eq. (B7) may
be indeed viewed as a minor improvement in the quality of the fit,
resulting from the introduction of an additional degree of freedom
in the problem. Besides, the fohm parameter involves most of the
quantities we are trying to fit, that is to say Lo, Ro, �

B and �
u (see

eq. B1).
Nevertheless, the above study clearly indicates that different scal-

ing laws can be proposed for Lo, depending on exponents consid-
ered for fohm. If one adopts the usual assumption that fohm = 1 for
planetary applications, the resulting relation for such applications
will not depend on the exponent of fohm. To illustrate this, we can
write equations (B3), (B6) and (B7) in dimensional form assuming
fohm = 1. These are, respectively,

B ∼ μ1/2 P0.32 �0.16 L−0.37 ρ0.18 ν0.01 η−0.30 κ0.18,

with χrel = 0.194, (B9)

B ∼ μ1/2 P0.30 �0.09 L−0.51 ρ0.20 ν0.09 η−0.20 κ0.11,

with χrel = 0.121, (B10)

and

B ∼ μ1/2 P0.31 �0.07 L−0.55 ρ0.19 ν0.11 η−0.19 κ0.08,

with χrel = 0.117 . (B11)

Table B2 gathers the above fitted values and the corresponding
confidence intervals. The latter are calculated using the 95 per cent
confidence intervals found in the non-dimensional scaling laws,
considering their more pessimistic combination. By this process,
the three relations can not be distinguished: for the exponents of all
parameters, there exists an interval common to the three expressions.
However, if we consider 70 per cent confidence intervals as Stelzer &
Jackson did, the incertitude of the exponent β̂ j is equal to σ̂β̂ j

instead
of 2 σ̂β̂ j

(see Appendix A). We can also deduce that expression (B9)
predicts a dependence of B on � which is twice that of (B11). A
similar effect can be noted for the dependence on κ . The dependence
on η predicted by (B9) is also 1.5 higher than that predicted by the
scaling law (B11). Finally, (B9) predicts a much weaker dependence
on ν than (B11) (1/10th factor). Thus, in the limit of 70 per cent
confidence intervals, the dependence of the magnetic field strength
on physical parameters seems to depend on the role given to fohm in
the numerical fit.

Using an estimate for the Earth’s core of Ra�
Q Earth = 10−14 (e.g.

Christensen & Aubert 2006) in (B3), (B6) and (B7) yields B Earth =
0.10 mT, B Earth = 0.05 mT and B Earth = 0.05 mT, respectively. It
should be compared to the rms magnetic field strength inside the
Earth’s core, estimated to be of the order of 2 − 4 mT (e.g. see
Buffett 2010; Gillet et al. 2010). Our values above are lower than
this estimated value by a factor 20–40, just as the values obtained
by Christensen & Aubert (2006) and Stelzer & Jackson (2013).

A P P E N D I X C : T H E M A G N E T I C
D I S S I PAT I O N L E N G T H S C A L E �B

C1 The �B length scale as a function of the flow amplitude

We interpret here earlier scaling laws in terms of assumptions made
on �

B and their implications for Ro and �.
Christensen & Tilgner (2004) have empirically shown that

τ �
η ∼ Rm−1 . Because τ �

η ∼ �
B

2 , this provides �
B ∼ Rm−1/2 (see
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Figure C1. The magnetic dissipation length scale versus a combination of the magnetic Reynolds number, the Ekman number and the magnetic Prandtl
number: (a) �

B ∼ Rm−1/2 (b) �
B ∼ Rm−0.57 Pm0.08 (both derived from Christensen & Tilgner 2004) (c) �

B ∼ Rm−5/12 E1/12
η (Christensen 2010) (d) �

B ∼
Rm−0.45 E0.05 Pm0.05 (Stelzer & Jackson 2013). These graphs rely on the full 102 dynamos database.

fig. C1a, see also Roberts & King 2013). According to eq. (16), this
scaling law corresponds to assuming that � ∼ 1, that is,  is the
width of the spherical shell. It is reasonably consistent with the 102
dynamos database used in this paper, since Rm�

B
2 varies from 0.19

to 1.25, that is to say over about one order of magnitude. Moreover,
note that some of the values are higher than unity: it is symptomatic
of the role played by correlations between the norm and direction
of u and B. Christensen & Tilgner (2004) have empirically im-
proved the above scaling law to �

B ∼ Rm−0.49 Re−0.08, where Re
is the Reynolds number (Re = Rm Pm−1). This expression can be
reformulated as �

B ∼ Rm−0.57 Pm0.08 (see Fig. C1b). Thanks to a
larger numerical data sample, this last scaling law has been opti-
mised by Christensen (2010) as �

B ∼ Rm−5/12 E1/12
η (see Fig. C1c),

and then by Stelzer & Jackson (2013) as �
B ∼ Rm−0.45 E0.05 Pm0.05

(see Fig. C1d).
As expected, the relative misfit χ rel decreases when the number of

predictor variables increases. Moreover, note that fits in Fig. C1 are
based on 102 numerical simulations extracted from the data sample
provided by U. Christensen. Thus, the sample used in Fig. C1 is
larger than the one originally used by Christensen & Tilgner (2004)
and Christensen (2010), and slightly different from that used by
Stelzer & Jackson 2013, also based on the 185 dynamos database
of U. Christensen but including fdip > 0.35 dynamos.

Finally, whereas the simple scaling law used in Fig. C1(a) corre-
sponds to a simple physical assumption on the length scale , the
three other laws, albeit more accurate, are simply based on empirical
fits.

C2 The �B length scale as a function of the injected power

Whereas the four aforesaid scaling laws rely on the magnetic
Reynolds number, scaling laws for the magnetic field amplitude
based on a production/dissipation balance rely on the flux-based
Rayleigh number Ra�

Q (see Sections 3.1 and 3.2). It is therefore
natural to seek for relations between the dissipation length scale �

B

and Ra�
Q .

Indeed, published scaling laws for the amplitude of the magnetic
field, such as the empirical scaling laws of Christensen & Aubert
(2006) (see our eqs (18) and (19)), can readily be translated in terms
of scaling laws for �

B . Thus, using equations (10) and (12), the
scaling laws (18) and (19), respectively imply �

B ∼ Ra�
Q

−0.16 E1/2
η ,

and �
B ∼ Ra�

Q
−0.18 E1/2 Pm−0.39 . It is interesting to note that in

the representations of relations (18) and (19) by Christensen &
Aubert (2006), the x-coordinate varies over six orders of magni-
tude (see Figs 2a and b in this paper and figs 8–9 in Christensen
& Aubert 2006) while none of the control parameters varies over
such a wide range. Thus, Fig. 3 (i.e. the above two relations) of-
fers a somewhat more challenging representation of the very same
expressions (18) and (19) in so far as the axes vary on a smaller
range.

The above scaling laws expressing �
B as a function of Ra�

Q were
deduced from (18) and (19). As �

B is related to both � and Ro,
they also imply relations between these two parameters and Ra�

Q .
It is through these relations that the first of these scaling laws for
the magnetic field strength was originally physically interpreted by
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846 L. Oruba and E. Dormy

Figure D1. The length scale �
u as a function of (a) Rm �

B
2 (relation D2) (b) fohm Rm �

B
2 (relation D3). These two graphs rely on the 102 dynamos database.

This figure highlights that the hypothesis made by Davidson (2013), although well suited for planetary dynamos, are not met by numerical models.

Christensen & Aubert (2006), Christensen (2010) and Jones (2011)
(see Section 3.4).

A P P E N D I X D : L E N G T H S C A L E S I N
DAV I D S O N ’ s ( 2 0 1 3 ) D E M O N S T R AT I O N

The magnetic dissipation length scale denoted as B in the present
paper is referred to as min in Davidson (2013). Besides, he carefully
introduced two length scales ‖ and ⊥ (the integral length scales
parallel and perpendicular to the rotation axis). The length scale ‖
can be approximated by L, and the length scale ⊥ corresponds to u

introduced in the present paper in Appendix B1. Davidson (2013)
is interested in planetary dynamos, for which fohm 	 1. We consider
here the question of the applicability of his analytical results to the
length scales computed from the numerical database.

Davidson’s dimensional analysis leading to relation (21) is based
on the assumption that 2

B/η is independent on the rotation rate.
This assumption, which was made in the limit relevant to plane-
tary interiors, does not seem to extend to the parameter regime of
numerical models. Indeed, using (9), the scaling law (B9) for the
magnetic field strength implies

2
B

η
∼ �0.314±0.268, (D1)

(95 per cent confidence interval). Admittedly, the relative confi-
dence interval is large, but the non-dependence of 2

B/η on the ro-
tation rate, while sensible in the regime relevant to the geodynamo,
is not relevant to the numerical data used here.

Besides, neglecting viscous effects, he considered the balance of
the curl of the Coriolis force, the buoyancy force and the Lorentz
force (the so-called MAC-balance, i.e. his eq. 10). Its combination
with relation (21) provided by his dimensional analysis leads to
2

B ∼ ηu−1⊥, which can be rewritten in its non-dimensional form
as

�
⊥ ∼ Rm �

B
2
. (D2)

By comparison with eq. (16), that means that ⊥ corresponds to
our length scale  defined in Section 3.3. The distinction between
 and ⊥ is proved important in our study. Fig. D1(a) highlights
that they should not be confused. The two assumptions, fohm 	 1
and negligible viscous effects, are indeed not verified in numerical
experiments.

If we use eq. (22) (eq. 9 in Davidson 2013) rather than (21)
(eq. 6 in Davidson 2013) to take fohm into account, we get
2

B ∼ η fohm
−1 u−1 ⊥, which can be rewritten in its non-

dimensional form as

�
⊥ ∼ fohm Rm �

B
2
. (D3)

This expression corresponds to a modified form of relation (D2),
adapted to fohm < 1 cases. Fig. D1(b) shows that even such an fohm

dependence does not provide a good description of the numeri-
cal data. This confirms that the assumption of negligible viscous
effects, valid in the bulk of the Earth’s core, is not applicable to
present numerical simulations. Davidson’s study therefore relies on
assumptions relevant to the geodynamo, but not to present direct
numerical simulations.

A P P E N D I X E : E S T I M AT I O N O F T H E
O N S E T O F DY NA M O A C T I O N

The critical values at the onset of dynamo action Rad gathered in
Table 1 have been estimated through a linear interpolation of the
magnetic energy as a function of the Rayleigh number near the
onset of dynamo action (see Section 4.1). As underlined by Morin
& Dormy (2009), the dynamo bifurcation can be either supercritical
or subcritical (or take the form of isola), the nature of the bifurcation
depending on the parameters. The estimation of the critical Rayleigh
number in the former case is represented in Fig. E1(a): the linear
interpolation of data near the dynamo threshold provides Rad. In
the case of subcritical bifurcations, the critical Rad estimated by our
method corresponds to the continuation of the subcritical branch, as
shown in Fig. E1(b). A similar approach is used to determine Rmd.
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Figure E1. Schematic representation of the behaviour of the magnetic energy as a function of the Rayleigh number, for a (a) supercritical and (b) subcritical
dynamo bifurcation. The solid (resp. dashed) lines indicate stable (resp. unstable) branches (see Morin & Dormy 2009). The linear interpolation (red solid line)
associated to data (red points) provides the value of Rad in both cases.
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