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ABSTRACT

The present paper provides a rationale for the regeneration stage undergone by surface cyclones when they

cross a baroclinic jet from its anticyclonic-shear (warm) side to its cyclonic-shear (cold) side in a two-layer

quasigeostrophic model. To do so, the evolution of finite-amplitude synoptic cyclones in various baroclinic

zonal flows is analyzed.

Baroclinic zonal flows with uniform horizontal shears are first considered. While the anticyclonic shear

allows amuchmore efficient and sustainable extraction of potential energy than the cyclonic shear, the growth

of the lower-layer eddy kinetic energy (EKE) is shown to be highly dependent on the choice of the parameter

values. An increased vertical shear leads to a more rapid EKE increase in the anticyclonic shear than in the

cyclonic shear whereas increasing the vertically averaged potential vorticity gradient or the barotropic shear

stabilizes the EKE more in the former shear than in the latter. Finally, vertical velocities arising from the

nonlinear interaction between synoptic cyclones are shown to favor EKE growth in the cyclonic shear rather

than in the anticyclonic one.

The evolution of cyclones initialized on the warm side of a meridionally confined baroclinic jet is then

investigated. The lower-layer cyclone crosses the jet axis and undergoes two distinct growth stages. The first

growth stage results from the classical baroclinic interaction and is mainly driven by linear interaction be-

tween the cyclones and the jet. The second growth stage is mainly a nonlinear process. It is triggered by the

vertical velocities created by the three-dimensional structure of the cyclonic disturbances when they reach the

cyclonic side of the jet.

1. Introduction

It is well known that extratropical cyclones develop by

extracting energy from the available background po-

tential energy through baroclinic interaction. The baro-

clinicity is the key parameter governing this interaction

and is usually quantified by the Eady growth rate,

which depends on the vertical shear of the background

flow (Hoskins and Valdes 1990). However, numerous

numerical studies have shown that the behavior of ex-

tratropical cyclones is modulated by the horizontal

shears of the large-scale background flow (James 1987;

Davies et al. 1991; Thorncroft et al. 1993; Wernli et al.

1998) as well as by its confluent and diffluent compo-

nents (Cai and Mak 1990; Whitaker and Barcilon 1992;

Schultz et al. 1998). Davies et al. (1991) and Thorncroft

et al. (1993) investigated the nonlinear evolution of un-

stable normal modes in unsheared, cyclonically sheared,

and anticyclonically sheared baroclinic zonal flows.

Both the synoptic-scale structure of the disturbances

and the fronts were shown to largely differ among the

three cases. For instance, the cyclonic (anticyclonic) shear

favors the formation of the warm (cold) front and the
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intensification of low (high) pressure systems. Wernli

et al. (1998) found similar results by initializing the

models with localized finite-amplitude anomalies. Fur-

thermore, the Norwegian cyclone model (Bjerknes and

Solberg 1922) is found to appear in the cyclonic-shear

case while the model of Shapiro and Keyser (1990) with

a T-bone frontal structure dominates in unsheared cases.

Despite all this information, it is still unclear which side

of a baroclinic zonal jet is the more cyclogenetic. In-

deed, even though the cyclonic side favors low pressure

systems as previously recalled, this side is biased by the

low pressure of the background environment and it is

not clear if the perturbation low is deeper on the cy-

clonic side than on the anticyclonic side. The purpose

of the present study is to numerically investigate this

aspect within a quasigeostrophic framework by modify-

ing the vertical and horizontal shears of the background

flow as well as the scale and intensity of the synoptic

disturbances in the initial conditions of the model.

Another motivation of the present study relies on the

observations that most Atlantic storms that hit Europe

undergo a rapid intensification stage during the crossing

of the large-scale jet stream from its warm-air to its cold-

air side—that is, from its anticyclonic to its cyclonic side

(Baehr et al. 1999; Wernli et al. 2002; Rivi�ere and Joly

2006; Pinto et al. 2009). Gilet et al. (2009) have recently

shown that such a regeneration of a surface cyclone

during the jet-crossing phase can be easily reproduced

by performing idealized numerical experiments of a two-

layer quasigeostrophic model on an f plane or a b plane.

The simplest numerical configuration consists in initial-

izing the model with localized finite-amplitude synoptic-

scale cyclones on the anticyclonic side of a baroclinic

zonal westerly jet. The key ingredient that allows a sur-

face cyclone to move across the upper-level jet axis is the

vertically averaged horizontal potential vorticity (PV)

gradient (hereafter called the barotropic PV gradient).

If the simulation is performed on an f plane with a pure

baroclinic westerly jet without any barotropic compo-

nent, the barotropic PV gradient is zero and the surface

cyclone is not able to cross the upper-level jet axis.

On the contrary, if the simulation is done on a b plane

and/or with a westerly jet having a nonzero barotropic

component, the barotropic PV gradient is poleward ori-

ented and the displacement across the jet axis may oc-

cur. The cross-jet speed increases with an intensified

poleward-oriented barotropic PV gradient. These re-

sults were interpreted as a generalization of the so-

called b-drift mechanism in a midlatitude atmospheric

context. Initially developed from a theoretical perspec-

tive by Rossby (1948) and Adem (1956), the b drift has

been extensively studied to explain the behavior of trop-

ical cyclones (e.g., Holland 1984; Moustaoui et al. 2002)

and oceanic vortices (e.g., Morel and McWilliams 1997)

and appears now as a key factor to explain the motion

of midlatitude synoptic eddies such as surface cyclones

(Gilet et al. 2009; Oruba et al. 2012, 2013) and upper-

tropospheric anomalies (Rivi�ere 2008). Note finally that

this mechanism was recently confirmed in a much more

realistic context by performing numerical sensitivity ex-

periments of the M�et�eo-France global operational fore-

cast model for the particular case of the winter storm

Xynthia that occurred at the end of February 2010

(Rivi�ere et al. 2012).

Although the mechanism responsible for the motion

of a surface cyclone across the upper-level jet axis was

identified in the idealized simulations of Gilet et al.

(2009) and Oruba et al. (2013) as explained above, the

reason for the regeneration stage during the jet-crossing

phase was not deeply investigated. The purpose of the

present study is to provide a rationale for this growth

stage using the same two-layer quasigeostrophic model

as in the latter studies and by making kinetic energy

budgets. In section 2, the model and energy budgets are

presented as well as a detailed decomposition of the

omega equation into linear and nonlinear terms. Sec-

tion 3 is dedicated to simulations where the background

flow is composed of uniform horizontal and vertical

shears. Sensitivity experiments over a wide range of

parameters are made to precisely diagnose the fac-

tors favoring the growth rates in anticyclonically sheared

and cyclonically sheared baroclinic zonal flows. In

section 4, the background flow is composed of a me-

ridionally confined zonal jet and a detailed energy

budget is made to identify the mechanism responsible

for the regeneration stage of the lower-layer cyclones

when they cross the jet axis and reach its cyclonic side.

Finally, section 5 summarizes the results and provides

a discussion.

2. Methodology

a. Model

The model is the two-layer quasigeostrophic model

initially developed by Phillips (1951). The two discrete

layers are contained between two rigid horizontal

plates. The model conserves the PV in the lower layer

(denoted with subscript l) and upper layer (denoted

with subscript u). The prognostic equations can be ex-

pressed as

›qk
›t

1 uk � $qk 5 0, k 2 [u, l] , (1)

where qk is the PV in the layer k. The PV has the fol-

lowing expression:
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qu5 f 1Dcu2 l22(cu2cl) , (2)

ql 5 f 1Dcl 1 l22(cu 2cl) , (3)

where D denotes the Laplacian operator. The stream-

function and geostrophic wind in the layer k are respec-

tively denoted as ck and uk 5 (uk, yk). Also, l denotes

the Rossby radius of deformation and f5 f0 1 by is the

Coriolis parameter. As in Gilet et al. (2009) and Oruba

et al. (2013), the model is spectral, and the nonlinear

terms are computed on a regular grid. A leapfrog tem-

poral scheme is used and the domain is biperiodic. The

spatial and temporal resolutions are equal to dx 5 dy 5
125 km and dt 5 225 s and no diffusion is included in

the following numerical experiments. Values of f0 and

l are 1024 s21 and 450 km, respectively (see Table 1).

Depending on the simulations, b can be equal to b0, a

typical midlatitude value of the y derivative of f (see

Table 1), or to 3b0 to represent the increased PV gradient

in presence of meridionally confined westerly jets.

b. Omega and relative vorticity equations

The omega equation in the two-layer model on a b

plane that determines the vertical velocity as function

of the geostrophic variables can be expressed as

(D2 2l22)(l21svu2l)

522
l21

s
$ �Q2 l22b(yu2 yl)5F , (4)

where

Q5 (Qx,Qy)

52l21s

�
1

2

›(uu 1ul)

›x
� $(cu 2cl),

1

2

›(uu 1ul)

›y
� $(cu 2cl)

�
(5)

is the so-called Q vector (Hoskins et al. 1978) and vu2l

denotes the vertical velocity in pressure coordinates

at the interface between the two layers. The quantity

s2 [ 2h(duR/dp) is a stratification parameter with uR
being the reference potential temperature and with h[
(R/p)(p/ps)

R/Cp . Note that l and s are linked by the fol-

lowing relation: l21s 5 f0/dp, where f0 is the Coriolis

parameter and dp the difference of pressure between the

middle of the two layers (Holton 1992).1 Note finally

that the sign of F, that is the right-hand side term of

Eq. (4), determines that of the vertical velocity because

F . 0 (F , 0) leads to updraft (downdraft).

In what follows, the total flow is decomposed into a

zonal basic state (denoted with an overbar) and a per-

turbation (denoted with primes). The zonal basic flow

depends only on latitude [uu 5 uu(y)i and ul 5 ul(y)i]

and is solution of Eq. (1). HereafterQlin andQnl denote

the linear and nonlinear parts of the Q vector, respec-

tively, which can be written as

Qlin [ 2l21s

�
1

2
(2uu 1 ul)

›

›x
(y0u 1 y0l),

1

2
(2uu1 ul)

›

›y
(y0u1 y0l)

1
1

2
(y0u 2 y0l)

›

›y
(uu 1 ul)

�
, (6)

Qnl [ 2l21s

�
1

2

›(u0u 1u0l)
›x

� $(c0
u 2c0

l),

1

2

›(u0u1 u0l)
›y

� $(c0
u2c0

l)

�
. (7)

The quantity F is also decomposed into a linear and

a nonlinear part such that F 5 F lin 1 Fnl. According to

Eq. (4), the linear part of F contains a part without b,

[F lin
0 [ 22(l21/s)$ �Qlin]; and another with b [F lin

b [
2l22b(y0u 2 y0l)] and can be expressed as

F lin [F lin
0 1F lin

b ,

52l22

8>><
>>:

(uu 2 ul)D(y
0
u 1 y0l)1

[b2 ›2y(uu 1 ul)](y
0
u 2 y0l)

22›yul›yy
0
u 1 2›yuu›yy

0
l

9>>=
>>;
. (8)

The first term of the right-hand side (rhs) of Eq. (8) cor-

responds to the classical baroclinic term that creates up-

draft (downdraft) to the east (west) of a cyclone embedded

in a positive vertical shear (uu 2 ul . 0). The second term

corresponds to the impact of an effective b on the vertical

velocity because it involves the barotropic PV gradient

[b2 ›2y(uu 1ul)]. The last two terms of the rhs of Eq. (8)

involving the horizontal shears and their impact on the

vertical velocity will be discussed later. Finally, the

nonlinear part of F can be simply expressed as

Fnl522
l21

s
$ �Qnl . (9)

TABLE 1. Summary of the different parameter values.

a Standard velocity shear 2.4 3 1025 s21

f0 Uniform Coriolis parameter 1024 s21

b0 Reference for the y derivative of f 1.6 3 10211m21 s21

l Rossby radius of deformation 4.5 3 105m

1Note that here, l has the dimension of a distance and is the

multiplicative inverse of Holton (1992)’s l.
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The linearity of the relation between F and vu2l [see

Eq. (4)] allows one to consider separately the vertical

velocity fields induced by the forcings F lin and Fnl. They

will be hereafter denoted as vlin
u2l and vnl

u2l respectively.

The relative vorticity evolution in each layer (zk) can

be written as (Holton 1992)

›z0u
›t

1 u0u � $zu1 uu � $z0u 1 u0u � $z0u 1by0u 5 l21sv0
u2l ,

(10)

›z0l
›t

1 u0l � $zl 1 ul � $z0l 1 u0l � $z0l 1by0l 52l21sv0
u2l ,

(11)

where l21sv0
u2l and 2l21sv0

u2l are the two stretching

terms f0›v
0/›p appearing in the upper-layer and lower-

layer equations of the two-layer quasigeostrophic model.

They are proportional to the vertical velocity at the in-

terface between the two layers because the lowermost

and uppermost frontiers of the model are rigid (Holton

1992). Suppose that an upper and a lower disturbance

are in quadrature phase with each other and that the

upper disturbance is to the west of the lower one.Where

the lower disturbance reaches its minimum pressure (or

maximum vorticity), y0l 5 0 and y0u reaches a positive

maximum. In midlatitudes, since the basic-state vertical

shear uu 2 ul is positive as well as the barotropic PV

gradient b2 ›2y(uu 1 ul), the first two terms on the rhs

of Eq. (8) have opposite signs in that region, with the

first one [2l22(uu 2 ul)Dy0u] being positive and the

second one f2l22[b2 ›2y(uu 2 ul)]y
0
ug being negative.

The effective beta term tends to reduce the ascending

motion above the maximum vorticity of the lower-layer

disturbance. This reduction in the vertical velocity re-

duces the positive stretching term in the lower-layer rel-

ative vorticity equation [see Eq. (11)] and reduces the

relative vorticity growth of the lower-layer disturbance.

On the contrary, where the upper disturbance reaches

its minimum pressure (or maximum vorticity), y0u 5 0 and

the first two terms on the rhs of Eq. (8) have the same sign

and are both negative. These two terms tend to intensify

the relative vorticity growth of the upper disturbance

through the stretching term [see rhs of Eq. (10)]. There-

fore, the effective beta term tends to create an asymmetry

between the two layers, which is described in the next

subsection from an energetic point of view.

c. Energy budget

Following Cai and Mak (1990), the time evolution

of the perturbation kinetic energy [K0 [ (1/2)u02g ] and

potential energy [P0 [ ( f 20 /2s
2)(›c0/›p)2] in quasigeo-

strophic equations can be expressed as

DgK
0

Dt
5E �D2$ � (u0gp0a1 f0c

0$x0)

2 f0
›

›p
(v0c0)1 f0v

0›c0

›p
, (12)

DgP
0

Dt
52

f 20
s2

�
y0g
›c0

›p

›2c

›y›p
1 u0g

›c0

›p

›2c

›x›p

�
2 f0v

0›c0

›p
,

(13)

where Dg/Dt5 ›/›t1 (ug 1 u0g) � $ denotes the Lagrang-

ian geostrophic derivative. The p0a and x0 represent re-
spectively the perturbation ageostrophic pressure and

velocity potential. They are both involved in the ex-

pression of the perturbation ageostrophic horizontal

velocity u0a 52(1/f0)k3$p0a 1$x0, where k is the ver-

tical unit vector. The scalar product E � D is the baro-

tropic energy conversion rate from the basic flow to the

perturbation with E and D being defined as follows:

E[

�
1

2
(y02g 2 u02g ), 2u0gy

0
g

�
, (14)

D[

�
›ug

›x
2

›yg

›y
,
›yg

›x
1

›ug

›y

�
. (15)

In the two-layer model, the kinetic energy equation at

the two layers can be written as

DgK
0
l

Dt
5El �Dl 2$ � (u0lp0al 1 f0c

0
l$x

0
l)

1 l21sv0
u2l

c0
u 1c0

l

2
2 l21sv0

u2l

c0
u 2c0

2
,

(16)

DgK
0
u

Dt
5Eu �Du 2$ � (u0up0au1 f0c

0
u$x

0
u)

2 l21sv0
u2l

c0
u1c0

l

2
2 l21sv0

u2l

c0
u2c0

l

2
,

(17)

and the potential energy equation at the interface be-

tween the two layers is

DgP
0

Dt
5
l22

2
[(y0u1 y0l)(uu 2 ul)2 (u0u 1 u0l)(yu2 yl)]

3 (c0
u 2c0

l)1 l21sv0
u21(c

0
u 2c0

l) .

(18)

By integrating each equation over the whole domain

(operation denoted as h�i), the advection terms included

in the Lagrangian geostrophic time derivatives of Eqs.

(16)–(18) and the horizontal redistribution terms that
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are the second terms of the rhs of the same equations

disappear. Therefore, we obtain

d

dt
hK0

li5 hEl �Dli1 hCVi1 hCIi
2

, (19)

d

dt
hK0

ui5 hEu �Dui2 hCVi1 hCIi
2

, and (20)

d

dt
hP0i5 hCBi2 hCIi , (21)

where d/dt denotes the time derivative. In addition,

CI52l21sv0
u2l(c

0
u 2c0

l) , (22)

CV5l21sv0
u2l

(c0
u 2c0

l)

2
, (23)

CB5
l22

2
[(y0u 1 y0l)(uu2 ul)

2 (u0u 1u0l)(yu2 yl)](c
0
u 2c0

l) . (24)

The quantity CI represents the internal conversion term

[i.e., the energy transfer from eddy potential energy to

eddy kinetic energy (EKE)]. Note that CI/2 appears on

the rhs of the kinetic energy equation of each layer [Eqs.

(19) and (20)] and is equivalent to the fourth term of

the rhs of Eq. (12) within the two-layer framework. Note

that 2CI logically appears on the rhs of the potential

energy equation at the interface [Eq. (21)]. The quantity

CB is the baroclinic conversion term (i.e., the baroclinic

energy transfer from the basic-state potential energy to

eddy potential energy) and is the two-layer formulation

of the first term of the rhs of Eq. (13). It is only involved

in the potential energy equation at the interface [Eq.

(21)]. The quantity CV is the two-layer formulation of

the convergence of the vertical ageostrophic fluxes [third

term on the rhs of Eq. (12)]. It corresponds to the ex-

changes of kinetic energy between the two layers since

CV and 2CV appear respectively in Eqs. (19) and (20).

Note finally that the sum of CV and CI/2 is simply the

product of the stretching term by the perturbation

streamfunction 2f0(›v
0/›p)c0 and has the following ex-

pression at the lower layer:

CV1
CI

2
5l21sv0

u2lc
0
l . (25)

When the two fields are anticorrelated (strong ascend-

ing motions above the lower-layer cyclone), CV1CI/2

reaches large positive values. Our study is hereafter

focused on the lower-layer kinetic energy (EKE) evo-

lution as diagnosed from Eq. (19).

d. Disturbances

The perturbation streamfunction c0
k in each layer k

has a Gaussian elliptic shape and is defined as

c0
k 5A0 exp

8>>>><
>>>>:

2
[(x2 x0k) cosf

01 (y2 y0k) sinf
0]2

r02(12 e02)

2
[2(x2 x0k) sinf

01 (y2 y0k) cosf
0]2

r02

9>>>>=
>>>>;
,

(26)

where A0 is the amplitude, r0 the characteristic spatial

scale, e0 the eccentricity, and f0 the angle of the major

axis with respect to the x axis. The upper- and lower-

layer disturbances have initially the same amplitude but

the lower disturbance is located downstream of the up-

per one to allow a substantial extraction of potential

energy from the basic-state flow.

3. Baroclinic zonal flows with uniform
horizontal shears

To simplify the problem, this section investigates the

impact of uniform cyclonic and anticyclonic horizontal

background shears onto the growth of lower-layer dis-

turbances in presence of constant vertical background

shears. To do so, the basic-state vorticity is defined as

a constant in each layer over a large area centered in the

middle of the domain (two-thirds of the domain). Be-

cause the model is biperiodic, the basic-state zonal wind

must be periodic and the averaged basic-state vorticity

must be zero. Therefore, outside the region of constant

basic-state vorticity, the basic-state vorticity is defined

using cosine profiles in such away that its spatial average

is zero over the whole domain. In the present section, all

the disturbances are initialized in the center of the do-

main in the region of constant basic-state vorticity and

we have checked that disturbances stay in that region

during the whole simulations.

Within the region of constant basic-state vorticity, the

basic-state zonal wind profiles have the following ex-

pression:

uu 52acxuy1alcz , (27)

ul 52acxl y , (28)

where a corresponds to a standard shear value (see

Table 1). The cxk for k 2 [u, l] and cz correspond to

nondimensional parameters determining respectively

the horizontal shear in each layer k and the vertical

shear. Note that acz 5 ( f /N)(›u/›z) is an estimate of the

baroclinicity (i.e., the Eady parameter divided by 0.31)
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and more precisely the maximum of the baroclinic

generation rate CB/(K0 1 P0) (Rivi�ere et al. 2004; Gilet

et al. 2009). The acxk for k 2 [u, l] is an estimate of the

horizontal deformation in each layer k and more pre-

cisely the maximum of the barotropic generation rate

Ek �Dk /(K
0 1P0). If cz 5 cxl 5 cxu, means that themaxima

of the barotropic and baroclinic generation rates are

equal.

In presence of uniform shears, F lin 5F lin
0 1F lin

b de-

pends on the following expressions:

F lin
0 52l22[laczD(y0u 1 y0l)2a(cxu2 cxl )yD(y

0
u 1 y0l)

1 2acxl ›yy
0
u 2 2acxu›yy

0
l] ,

(29)

F lin
b 52l22b(y0u 2 y0l) . (30)

All the terms in the previous two equations are con-

trolled by the basic-state parameters cz, cxl , c
x
u, and b.

Note finally that because uniform shears are considered

in this section, basic-state relative vorticity gradients are

zero and the effective beta is reduced to b [see second

term on the rhs of Eq. (8)]. The value of b is therefore

artificially increased beyond its usual value in mid-

latitudes to reproduce the stronger effective beta in

presence of localized jets.

a. Vertical velocity induced by the various basic-state
parameters

1) THE EFFECT OF THE BASIC-STATE VERTICAL

SHEAR AND PV GRADIENT

Let us first analyze the case without horizontal

shears (cxu 5 cxl 5 0) with a positive vertical shear cz . 0.

Figure 1a shows the vertical velocity due to the part of

the linear term depending on the upper disturbance—

that is, F lin
0 when y0l equals 0, which can be reduced to

F lin
0 (y0l 5 0)52l21aczDy0u. It shows that there is ascend-

ing and descending motion respectively downstream

and upstream of a cyclone when the vertical shear cz is

positive. Because the upper disturbance is located up-

stream of the lower one, its velocity induces ascending

motions above the lower disturbance that will tend to

intensify it. This intensification is commonly explained

by noting that the perturbation relative vorticity will

increase via the stretching term f0›v/›p but this can

be viewed from a kinetic energy perspective. The lower-

layer kinetic energy evolution [Eq. (19)] depends on the

sum CV1CI/25 l21sv0
u2lc

0
l, which is mainly positive

because the part of l21sv0
u2lc

0
l related to the upper dis-

turbance is mainly negative above the minimum stream-

function at the lower layer. In other words, when there is

a dominant westward tilt with height of the perturbation

streamfunction isolines with a phase tilt of 908 as in the

present case, y0u is well anticorrelated with c0
l leading to

a strong correlation between l21svlin
u2l(y

0
l 5 0) and to

large positive values of CV1CI/2. On the contrary, the

vertical velocity due to the part of the linear term de-

pending on the lower disturbance F lin
0 (y0u 5 0)5

2l21aczDy0l (Fig. 1b) is in quadrature phase with c0
l and

thus does not modify the lower-layer kinetic energy.

As already discussed in section 2b, we expect that the

b term tends to diminish the relative vorticity growth

of the lower-layer perturbation. The stabilizing effect

of b in the lower layer can be also viewed in terms of

kinetic energy because F lin
b (Fig. 1d) is mainly negative

in the region where the lower-layer streamfunction is

negative. The b term thus creates descending motions

above the lower-layer perturbation that tends to di-

minish the kinetic energy growth due to F lin
0 (Fig. 1c).

The Q vector due to the nonlinear term (arrows in

Fig. 1e) is strong and poleward oriented in the region

located between the two cyclonic disturbances because

Qnl
y ’ 20:5l21s›y(u

0
u 1 u0l)(y

0
u 2 y0l) is positive in that

region since (y0u 2 y0l). 0 and ›y(u
0
u 1 u0l), 0. This cre-

ates ascending motions to the north and descending

motions to the south of the disturbances; but l21sv0
u2l

due to the nonlinear term and c0
l are in quadrature

phase and there is no global kinetic energy change

coming from this term in that particular case.

In the end, the forcing induced by b can almost nullify

the projection of the stretching term l21sv0
u2l onto c0

l

created by the linear forcing F lin
0 , which would other-

wise lead to kinetic energy growth in the lower layer.

2) THE EFFECT OF THE BASIC-STATE HORIZONTAL

SHEARS

Without horizontal shears, the Q vector due to the

linear part [Eq. (6)]—that is,Qlin—is eastward oriented

along the segment line joining the two centers of the

cyclones (see Fig. 1a). In presence of a cyclonic baro-

tropic shear (cxu 5 1:0, cxl 5 1:0), Qlin will have a strong

poleward component in that region between the two

disturbances. Indeed, Qlin
y ’ 2l21s(1/2)(y0u 2 y0l)(›/›y)

(uu 1 ul)5 l21s(1/2)(y0u 2 y0l)a(c
x
u 1 cxl ) is positive and

maximum in the region where the dashed and solid

black contours are superimposed upon each other (see

Figs. 2a,b). Therefore, the convergence of theQ vector

due to the presence of the upper disturbance F lin
0 (y0l 5 0)

will not reach its maximum in the region where the me-

ridional velocity y0u is maximum—that is, on the eastern

side of the upper disturbance as in the case without

shear (Fig. 1a)—but rather on its northeastern side

(Fig. 2a). This can be also seen by considering Eq. (29) for

y0l 5 0, that is, F lin
0 (y0l 5 0)52l21aczDy0u 2 2l22acxl ›yy

0
u.

The second term on the rhs of the previous expression
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FIG. 1. Stretching term 2l21sv0
u2l, proportional to the vertical velocity at the interface be-

tween the two layers [gray contours; solid and dashed lines for ascending and descend-

ingmotions, respectively; contour interval 53 10211 s22] induced by (a) the linear termwithout

b due to the presence of the upper disturbance [F lin
0 (y0l 5 0)], (b) the linear term without b due

to the presence of the lower disturbance [F lin
0 (y0u 5 0)], (c) the linear term without b [sum of

(a) and (b)], (d) the b term F lin
b , (e) the nonlinear term Fnl, and (f) the sum of all the terms

F5F lin
0 (y0l 5 0)1F lin

0 (y0u 5 0)1F lin
b 1Fnl. Arrows represent theQ vector for the different terms.

The blackdashed and solid contours represent respectively the perturbation streamfunction at the

upper and lower layer (contour interval 107m2 s21, negative values only). The cross corresponds

to the position of the minimum perturbation streamfunction at the lower layer.
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is positive on the northeastern side of the upper distur-

bance. It means that the optimal growth for the lower-

layer kinetic energy is no longer a pure westward tilt

with height but rather a southwestward tilt with height.

Figure 2b shows the vertical velocity forcing due to the

lower disturbance. Since F lin
0 (y0u 5 0)52l21aczDy0l 1

2l22acxu›yy
0
l, the vertical velocities are displaced south-

ward relative to its no-shear counterpart (Fig. 1b).

Figures 2c and 2d show the effect of an upper-layer

cyclonic shear without shear at the lower layer (cxl 5 0).

SinceF lin
0 (y0l50)52l22(laczDy0u2acxuyDy

0
u), the upper-

layer shear effect due to the upper-layer cyclone is a

southward shift of the vertical velocities because of

stronger vertical shear to the south, which is confirmed by

Fig. 2c. It is interesting to note that the upper-layer shear

has the opposite effect to the barotropic shear in terms of

the vertical velocity forcings induced by the upper-layer

disturbance (cf. Figs. 2a and 2c). On the contrary, the

vertical velocity forcings induced by the lower-layer dis-

turbance are both displaced southward by increasing the

barotropic shear (Fig. 2b) and the upper-layer shear

(Fig. 2d). However, these vertical velocities induced by

c0
l do not have any net effect on EKE because they are

still in quadrature with c0
l.

FIG. 2. Stretching term2l21sv0
u2l in the case of (a),(b) cxu 5 1:0 and cxl 5 1:0 and (c),(d) cxu 5 1:0, cxl 5 0:0 induced

by (a),(c) the linear termwithout b due to the presence of the upper disturbance only [F lin(yu0 5 0)] and (b),(d) the

linear term without b due to the presence of the lower disturbance only [F lin(y0u 5 0)]. Arrows and contours as in

Fig. 1.
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Let us summarize the direct effects of the horizontal

shears in the linear part of the vertical velocities F lin
0

[Eq. (29)]. An increase in the upper-layer shear displaces

the peak of ascending motions created by the upper cy-

clone to its southeastern side for the cyclonic shear and

to its northeastern side for the anticyclonic shear. The

converse occurs for an increase in the barotropic shear.

Another interesting aspect to consider is the non-

linear vertical velocity forcing when the disturbances

are horizontally elongated as in Fig. 3. This effect can

be an indirect effect of the horizontal shears. As in the

no-elongation case (Fig. 1e), the Q vector is mainly

poleward between the two disturbances because Qnl ’
2l21s[0, 0:5(y0u 2 y0l)›y(u

0
u 1 u0l)]. Thus, F

nl [see Eq. (9)]

is mainly positive to the north and negative to the

south and the stretching term has a south–north di-

polar structure as in the no-elongation case (compare

Figs. 3a,b to Fig. 1e). However, the forcing term Fnl ’
l22[›y(y

0
u 2 y0l)›y(u

0
u 1u0l)1 (y0u 2 y0l)›

2
y(u

0
u 1 u0l)] is no

longer in quadrature with the lower-layer perturba-

tion streamfunction c0
l as in the no-elongation case.

Indeed, in the region where c0
l reaches its minimum,

horizontal velocities (u0l, y
0
l) are close to zero. Further-

more, being close to its maximum in that region, its y

derivative is close to zero and one can deduce that

Fnl ’ l22(2›yy
0
l›yu

0
1 1 y0u›

2
yu

0
u). In the case of the cy-

clonic tilt (Fig. 3a), y0u and u0u have opposite signs and the

product y0u›
2
yu

0
u is positive. Furthermore, ›yy

0
l . 0 and

›yu
0
1 , 0 leads to 2›yy

0
l›yu

0
1 . 0. In the region where c0

l

reaches its minimum, F nl is therefore positive. This non-

quadrature structure leads to a positive spatial average

of the product between the nonlinear stretching term

l21svnl
u2l and the lower-layer perturbation stream-

function c0
l for the cyclonic tilt. A lower-layer kinetic

energy increase (decrease) is then induced in the cy-

clonic (anticyclonic) orientation case. To conclude, even

though the basic-state horizontal shear is not directly

involved in the nonlinear stretching term, it may po-

tentially have an impact on this term because it will

tend to horizontally elongate the disturbances (cycloni-

cally if the shear is cyclonic as in Fig. 3a and anti-

cyclonically if the shear is anticyclonic as in Fig. 3b).

We thus expect an increase and a decrease in the lower-

layer kinetic energy due to the nonlinear term for the

cyclonic and anticyclonic shear respectively.

b. Time evolution of the control simulations

The previous instantaneous diagnoses of the vertical

velocities will be useful to analyze the time evolution of

the disturbances in the following control simulations.

The control simulations have the same vertical shear

cz 5 1.0 and the same amplitude for the horizontal

shears with cxu 5 1:0 and cxl 5 0:5 for the cyclonic-shear

case and cxu 521:0 and cxl 520:5 for the anticyclonic-

shear case. The lower-layer shear is weaker than the

upper-layer one to reproduce the configuration of real

midlatitude jets. The perturbation parameters are A0 5
18 3 106m2 s21 and r0 5 9 3 105m. The two columns

on the left side of Fig. 4 correspond to the control sim-

ulations with anticyclonic and cyclonic shear without b

and the other two on the right side to simulations with b.

Let us first analyze the anticyclonic case without b (first

FIG. 3. Stretching term 2l21sv0
u2l in the case of (a) e0 5 0.9, f0 5 p/4 and (b) e0 5 0.9, f0 5 2p/4 induced by the

nonlinear term F nl. Arrows and contours as in Fig. 1.
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column). As shown in Gilet et al. (2009), for the anti-

cyclonic shear, both disturbances are stretched along

the southwest–northeast direction and the lower distur-

bance keeps maintaining its position to the east of the

upper disturbance (see Fig. 4m). This three-dimensional

structure has some consequences from an energetic

point of view as shown by averaging the various kinetic

energy conversion rates over an area S spanning over

the lower-layer perturbation streamfunction (hereafter

denoted as h�iS). Because of the stretching of the

FIG. 4. Time evolution of the perturbation streamfunction at the lower (black solid contours) and upper (black dashed contours) layer

and the stretching term 2l21sv0
u2l (gray contours) for (first column) an anticyclonic shear (cz 5 1.0, cxu 5 1:0, cxu 520:5) without b,

(second column) a cyclonic shear (cz 5 1.0, cxu 521:0, cxu 520:5) without b, (third column) an anticyclonic shear (cz 5 1.0, cxu 5 1:0,

cxu 5 0:5) with b5 3b0, and (fourth column) a cyclonic shear (cz 5 1.0, cxu 5 1:0, cxu 5 0:5) with b5 3b0. Shadings correspond to the basic-

state zonal wind in the lower layer (positive values only). The different times (top to bottom) are t 5 0.125, t 5 6, t 5 12, and t 5 18 h.

Intervals as in Figs. 1 and 2.
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perturbation along the dilatation axes, the barotropic

conversion rate hEl �DliS/hK0
liS is negative (gray line

with stars in Fig. 5a) and the perturbation is losing

energy via barotropic interaction. However, because of

the maintained westward tilt with height of the per-

turbation streamfunction, hCI/2iS/hK0
liS (gray line with

diamonds in Fig. 5a) is positive [cf. section 3a(1)] and

even increases during the simulation. The convergence

of the vertical ageostrophic fluxes hCViS/hK0
liS is close

to zero (gray line with triangles in Fig. 5a). This can be

easily explained by noting that the dominant term of

F lin
0 [Eq. (29)] is 2l21aczD(y0u 1 y0l), which is in quad-

rature phase with c0
u 1c0

l. This renders the product

between l21sv0
u2l and c0

u 1c0
l, that is, CV [Eq. (23)],

small on average. To conclude the discussion of this

simulation, since hCViS/hK0
liS is mostly zero and

hCI/2iS/hK0
liS is positive with stronger amplitude than

the negative values of hEl �DliS/hK0
liS, the sum of the

three terms during the whole simulation (solid black

lines in Fig. 5a) is positive and close to the kinetic energy

FIG. 5. Time evolution of the lower-layer EKE growth rate (1/hK0
liS)(dhK0

liS/dt)(dashed black

lines) for disturbances embedded in (a),(b) an anticyclonic shear (cz 5 1.0, cxu 521:0, cxu 520:5) and

(c),(d) a cyclonic shear (cz 5 1.0, cxu 5 1:0, cxu 5 0:5). Cases are for (left) b5 0 and (right) b5 3b0. The

gray lines with triangles, diamonds, and stars and the solid black line correspond respectively to

hCViS/hK0
liS, hCI=2iS/hK0

liS, hEl �DliS/hK0
liS, and the sum of all three terms. Spatial averages h�iS are

made locally over a square S with half-length 2000 km and centered on the minimum perturbation

streamfunction at the lower layer at each time. Abscissas are in hours.
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local growth rate (dashed black lines in Fig. 5a). The

difference between the two curves is due to the hori-

zontal redistribution terms [see Eq. (16)], which are

not exactly zero when the spatial average is locally

computed.

The anticyclonic case with b (third column of Fig. 4)

exhibits similar behavior but the amplitudes of the

upper and lower disturbances are significantly reduced

compared to the case without b (first column of Fig. 4).

This is consistent with the well-known stabilizing effect

of b in baroclinic instability such as on normal modes

(Vallis 2006) or singular modes (Rivi�ere et al. 2001).

Furthermore, the lower-layer streamfunction decreases

more rapidly than the upper-layer one (see Fig. 4o). The

kinetic energy budget in Fig. 5b shows that (gray line with

triangles), which redistributes kinetic energy from lower

to upper layer, is the prime driver of this growth differ-

ence. The value of hCViS/hK0
liS is so largely negative that

the sum (hEl �DliS 1 hCViS 1 hCI/2iS)/hK0
liS is negative

throughout the simulation.

In the cyclonic-shear case without and with b (second

and fourth columns of Fig. 4), as shown in Gilet et al.

(2009), the axes of the two cyclonic disturbances turn

cyclonically and there is no elongation along the di-

latation axes. It leads to smaller negative values for

hEl �DliS/hK0
liS than in the anticyclonic cases and even

slightly positive ones after 20 h (cf. the gray curves with

stars between Figs. 5a and 5c and between Figs. 5b and

5d). The value of hCI/2iS/hK0
liS is strongly positive but

decreases after a while without and with b (see the

gray lines with diamonds in Figs. 5c,d). The quantity

hCViS/hK0
liS is close to zero without b and is strongly

negative with b but its amplitude decreases with time

(see the gray lines with triangles in Figs. 5c,d). Indeed,

as explained before in presence of b, CI and CV are

initially quite large when the lower cyclone is down-

stream of the upper one but have opposite signs. Whereas

this configuration is maintained in the anticyclonic shear,

it is only transient in the cyclonic shear because the two

disturbances turn around each other. This largely explains

why the absolute amplitudes of both hCI/2iS/hK0
liS and

hCViS/hK0
liS are relatively small and even decrease after

10 h in the cyclonic shear. Without b, there are not many

differences between the EKE growth rates in both shears

(cf. the black lines in Figs. 5a,c). However, with b, be-

cause CV becomes much more strongly negative in the

anticyclonic shear than in the cyclonic shear (cf. the gray

lines with triangles in Figs. 5b,d), the EKE growth rate is

negative in the former shear and close to zero in the

latter one (see the black lines in Figs. 5b,d).

Another large difference between the two shears con-

cerns the eddy potential energy (EPE) budget (Fig. 6).

Since the westward tilt with height is maintained with

time in the anticyclonic shear, hCBiS/hP0iS is maintained

with large positive values during the whole simulation

(gray curves with squares in Figs. 6a,b). On the contrary,

in the cyclonic-shear case, hCBiS/hP0iS decreases rapidly
with time (gray curves with squares in Figs. 6c,d) be-

cause the westward tilt with height is not maintained.

This difference explains why the EPE growth rate is

much smaller in the cyclonic shear than in the anticy-

clonic shear. This result is valid with and without b even

though we notice that the potential energy growth rates

are smaller with b than without b. This last result is dif-

ficult to interpret because b does not appear in the ex-

pression of CB [see Eq. (24)].

Figure 7 details the budget of the sum of the inter-

nal conversion rate and the convergence of the vertical

ageostrophic fluxes CV1CI/25 l21sv0
u2lc

0
l by analyz-

ing the various terms involved in the stretching term

2l21sv0
u2lc

0
l. During the anticyclonic-shear run, there

is an increase with time in the difference between the

cases without and with b (cf. the black lines in Figs. 7a,b)

for hCV 1 CI/2iS/hK0
liS. On the contrary, during the

cyclonic-shear run, there is a slight decrease with time

in the difference between the cases without and with b

(cf. the black lines in Figs. 7c,d). This can be explained in

large part by the b term F lin
b [Eq. (30)]. For the anticy-

clonic shear, hCV1CI/2iS/hK0
liS due to F lin

b (gray solid

line in Fig. 7b) becomes more and more negative with

time. This could be explained by the stretching of the

cyclones, which are more and more meridionally tilted

(see the third column of Fig. 4), increasing the ratio

between the perturbation meridional and zonal veloc-

ities. The ratio hCV1CI/2iS/hK0
liS could be thus more

negative because of a greater ratio between meridional

velocities and K0
l. For the cyclonic shear, hCV1CI/2iS/

hK0
liS due to F lin

b (gray solid line in Fig. 7d) becomes less

and less negative with time because the two disturbances

are turning around each other without being signifi-

cantly stretched. This makes the correlation between y0u
and c0

l small and the value of hCV1CI/2iS/hK0
liS due to

F lin
b becomes less and less negative during the simula-

tion. The linear part F lin
0 for the cyclonic shear becomes

less positive in the case with b (gray dashed lines in

Figs. 7c,d) while it does not change so much for the

anticyclonic shear (gray dashed lines in Figs. 7a,b).

The nonlinear part of hCV1CI/2iS/hK0
liS due to Fnl

(dash-dotted lines in Fig. 7) participates in the difference

between the anticyclonic-shear and cyclonic-shear cases.

It is negative and positive in the anticyclonic-shear and

cyclonic-shear case respectively as expected from Fig. 3.

The presence of b amplifies this nonlinear effect (cf. Figs.

7a,b and Figs. 7c,d), which can be interpreted as follows.

In the anticyclonic-shear case, cyclones are slightly less

meridionally stretched and more southwest–northeast
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oriented with b than without b. This leads to a more

negative value of CV1CI/2 due to F nl with b. In the

cyclonic-shear case, cyclones less rapidly rotate cycloni-

cally with b and therefore stay a longer time with

a northwest–southeast elongation. The effect is to in-

crease the positive value of CV1CI/2 due to F nl. This

might explain part of the amplifying difference between

the cyclonic and anticyclonic shear cases in the presence

of b.

To conclude, the stabilizing effect of b is less efficient

in the cyclonic-shear case than in the anticyclonic-shear

case as the lower-layer kinetic energy growth rate is greater

in the former case than in the latter in presence of b while

the two growth rates have equivalent amplitudes when b

is zero. This is explained in large part by the direct effect

of b in the vertical velocity forcing (F lin
b ) as well as by the

indirect effect in the nonlinear vertical velocity forcing

(F nl), which are both involved in the sum CV1CI/2.

c. Sensitivity to various parameters

The previous control simulations were obtained for

specific values of the parameters. The purpose of the

present section is to change the value of each pa-

rameter to identify its role in the difference between

FIG. 6. Time evolution of the eddy potential energy (EPE) growth rate (1/hP0iS)(dhP0iS/dt) (dashed
black lines) for disturbances embedded in (a),(b) an anticyclonic shear (cz 5 1.0, cxu 521:0, cxu 520:5)

and (c),(d) a cyclonic shear (cz5 1.0, cxu 5 1:0, cxu 5 0:5). Cases are for (left) b5 0 and (right) b5 3b0. The

gray lines with squares and diamonds, and the solid black lines correspond respectively to

hCBis/hP0is, h02CIis/hP0is, and the sum of these terms hCB2CIis/hP0is. Spatial averages h�iS are made

locally over a square S with half-length 2000 km and centered on the minimum perturbation stream-

function at the lower layer at each time. Abscissas are in hours.
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cyclonic- and anticyclonic-shear cases. Figure 8 shows

the sensitivity of the EKE amplification between t 5 0

and t 5 24 h, hK0
liS(t5 24 h)/hK0

liS(t5 0 h), to various

parameters. Spatial averages are still computed over a

square S whose center is the lower-layer perturbation

streamfunction minimum. When spatial averages are

made over the whole domain amplification rates are

greater than when they are made over the area S be-

cause energy redistribution terms [second term on the

rhs of Eq. (5)] tend to disperse energy outside the region

where finite-amplitude disturbances are. Note that this

horizontal dispersion of energy is even stronger when b

is present (not shown) because of the so-called Rossby

radiation of energy in the presence of the PV gradient

(Oruba et al. 2013). Despite these distinct features be-

tween the global and local averages, the results below are

valid for both averages and only local ones are shown in

Fig. 8.

Generally speaking, the presence of b reduces EKE

amplification rates (cf. the dashed and solid lines in

Fig. 8). The stabilizing effect of b is more efficient in the

anticyclonic-shear case than in the cyclonic-shear case

and confirms the results found before.

Let us now look at the sensitivity to individual param-

eters. Since the difference between the two horizontal

shears is a nonlinear phenomenon, it is natural to change

the value of the initial amplitude of the disturbances.

Figure 8a shows the sensitivity to the perturbation

FIG. 7. Time evolution of the sum of the internal conversion rate and the convergence of the vertical

ageostrophic fluxes hCV1CI/2is/hK0
liS (black lines) at the lower layer for (a),(b) an anticyclonic shear

(cz 5 1.0, cxu 521:0, cxu 520:5) and (c),(d) a cyclonic shear (cz 5 1.0, cxu 5 1:0, cxu 5 0:5). Cases are for

(left) b5 0 and (right) b5 3b0. The dashed, solid, and dash-dotted gray lines correspond respectively to

the part of hCV1CI/2is/hK0
liS coming from the linear terms without b F lin

0 and with b F lin
b and the non-

linear term (F nl). Spatial averages h�iS are as in Fig. 5.
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amplitude A0. In the case without b (dashed lines),

changing the perturbation amplitude does not modify

the result. In presence of b (solid lines), the EKE am-

plification is systematically larger for the cyclonic-

shear case than the anticyclonic-shear case and the

difference between the two cases slightly increases with

the perturbation amplitude. The last result was ex-

pected because the two cases converge toward each

other for very small disturbances.

Figure 8b shows the sensitivity to the horizontal scales

of the disturbances r 0, keeping constant the distance

between them. The two simulations without b are gen-

erally similar (dashed lines). With b, EKE amplification

rates are stronger for smaller length scales. This result

is consistent with the previous sensitivity test to A0. In-
deed, the eddy vorticity simply scaling as A0/r02, an in-

crease in A0 would have the same effect on vorticity

amplitude as a decrease in r02. For all the length scales

in presence of b, the growth rates are greater in the

cyclonic-shear case than in the anticyclonic-shear case and

the difference between the two cases slightly increases

by increasing the length scale. This last result cannot be

FIG. 8. Lower-layer kinetic energy amplification between t5 0 and t5 24 h as function of (a) the initial

amplitude of the disturbancesA0, (b) the perturbation radius r0, (c) the basic-state vertical shear cz, (d) the
basic-state barotropic horizontal shear jcxuj5 jcxl j, (e) the basic-state upper-layer horizontal shear jcxuj for
cxl 5 0, and (f) the basic-state lower-layer horizontal shear jcxl j for jcxuj5 1:0. The gray and black lines

correspond respectively to the cyclonic- and anticyclonic-shear cases while the dashed and solid lines

correspond to the cases with b5 0 and b5 3b0. Kinetic energy spatial averages are made locally over the

same square S centered on the minimum lower-layer perturbation streamfunction as in Figs. 5 and 7.
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simply explained in terms of vorticity amplitude because

an increase in r 0 (which decreases the vorticity ampli-

tude) leads to larger differences between the cyclonic

and anticyclonic-shear cases similarly to an increase in

A0 (which increases the vorticity amplitude).

The sensitivity to the basic-state vertical shear cz is

shown in Fig. 8c. As expected, all growth rates become

larger by increasing cz because CI becomes larger. In the

case without b (dashed lines), the EKE amplification

rate becomes larger for the anticyclonic shear than for

the cyclonic shear for cz $ 1.5. With b (solid lines), the

same thing occurs for cz$ 2.0. This is consistent with the

fact that the westward tilt with height is maintained with

time in the anticyclonic shear while it is not in the cy-

clonic shear. Indeed, following Eqs. (4) and (29), the

term involving the vertical shear in CV1CI/2 can

be expressed as CV1CI/252l21aczc0
l(D2 2l22)21

D(y0u 1 y0l), which is close to 2l21aczc0
ly

0
u where c0

l is

minimum. For the anticyclonic shear, since the west-

ward tilt with height is well maintained, y0u and c0
l are

strongly anticorrelated and an increased cz leads to

a rapid increase in 2l21aczc0
ly

0
u and thus in CV1CI/2.

On the contrary, for the cyclonic shear, because y0u and c0
l

are not well anticorrelated, CV1CI/2 ’ 2l21aczc0
ly

0
u

increases less rapidly with cz. The same reasoning holds

when looking at the vertical velocity forcing term in-

volving b in Eq. (2.2), whose effects in CV1CI/2 can be

written as 2l22bc0
l(D2 2l22)21(y0u 2 y0l), which is also

highly dependent on the correlation between y0u and c0
l.

However, cz and b have opposite effects. The term in-

volving cz increases EKE while the one involving b de-

creases it. The cz increase leads to a more rapid EKE

increase in the anticyclonic shear than in the cyclonic

shear while the b increase leads to a more rapid EKE

decrease in the former shear than in the latter.

Figure 8d shows the sensitivity to the barotropic shear,

that is when cxl and cxu are changed but maintained equal

to each other. While the EKE amplification does not

change much in the cyclonic shear, a strong barotropic

shear practically eradicates any lower-layer cyclogenesis

in the anticyclonic shear, especially in the case with b

(black solid line). This can be explained in large part by

the barotropic conversion rate. For large horizontal

shears, the lower-layer cyclone embedded in the anti-

cyclonic shear is strongly stretched leading to negative

kinetic energy growth rates because of negative baro-

tropic conversion rates. In the cyclonic shear, the lower-

layer cyclone is not that stretched and its axis is not

maintained along the dilatation axes: the barotropic

conversion rate is thus relatively small. The quantity

CV1CI/2 (not shown) is also responsible for the sta-

bilizing effect of the barotropic anticyclonic shear.

When this shear is increased, the nonlinear part of the

vertical velocity leads to more and more negative ten-

dencies which significantly reduces CV1CI/2. Differ-

ences in the nonlinear term are even larger in presence

of b (not shown). It is consistent with Fig. 7 showing

larger magnitudes of the nonlinear terms in presence

of b (cf. the dash-dotted lines in Figs. 7a,b).

Figure 8e shows the sensitivity to the upper-layer

shear cxu for cxl 5 0. Since the lower-layer shear is zero,

there is no barotropic sink and EKE amplification rates

are greater than in the case with barotropic shear. The

anticyclonic shear exhibits even stronger EKE amplifi-

cation rates with increasing the upper-layer shear. This

is mainly due to the linear part of the vertical velocity

(not shown). As shown in Fig. 2c, the ascending motions

due to the presence of the upper-layer cyclone are to the

southeast for the cyclonic shear and to the northeast for

the anticyclonic shear. Since the lower-layer cyclone is

maintained to the northeast of the upper-layer cyclone

in the anticyclonic shear (see the first and third col-

umns in Fig. 4), there is a good correlation between the

linear vertical velocity triggered by the upper-layer

cyclone and the lower-layer streamfunction. Another

effect that renders the previous correlation strong is

due to the horizontal stretching of the disturbances that

increases the ratio between the eddy meridional velocity

and the eddy kinetic energy. Since F lin
0 (y0l 5 0)52l22

(laczDy0u 2acxuyDy
0
u), the associated linear stretching

term 2l21svlin
u2l depends strongly on y0u. Therefore, the

ratio hCV1CI/2i/hK0
liS depends on the ratio y0u/K

0
l,

which is greater for meridionally stretched cyclones. To

conclude, the reinforcement of the upper-layer anticy-

clonic shear facilitates the EKE increase via the linear

vertical velocity forcings.

Since Figs. 8d and 8e show that the increased barotropic

and upper-layer shears respectively decrease and increase

the EKE amplification rates in the anticyclonic-shear

case, we expect a strong decrease in EKE amplification

rates when the lower-layer shear is increased. This is

precisely what Fig. 8f shows (see the black lines). The

cyclonic-shear cases are less sensitive to the lower-layer

shear (gray lines).

To conclude, increasing the basic-state vertical shear

destabilizes the anticyclonic-shear cases more while in-

creasing b or the lower-layer horizontal shear stabilizes

them more than the cyclonic-shear ones. The sensitivity

to perturbation parameters, such as to the spatial scale

or the amplitude, shows less drastic differences between

the two shears.

4. Meridionally confined zonal jet

In the present section, the jet-crossing phase un-

dergone by a surface cyclone is investigated. To do so,
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a unique simulation is performed that is similar to the

one described by Gilet et al. (2009). The initial condi-

tions are the following: The basic-state flow consists of a

meridionally confined zonal jet having a Gaussian hor-

izontal profile with maximum wind speeds at the lower

and upper layer equal respectively to 25 and 50m s21

[see the basic-state wind profile in Fig. 10 of Gilet et al.

(2009)]. The perturbation flow is composed of the same

two zonally aligned disturbances as in previous sec-

tions but localized to the south of the jet at a distance of

875km. The distance between the two disturbances is

1000 km and other perturbation parameters areA0 5 23
107m2 s21 and r0 5 1000km. As shown by Gilet et al.

(2009), the two disturbances move northward through

a generalized b-drift mechanism in presence of a posi-

tive barotropic PV gradient. The lower-layer cyclone

crosses the jet axis around t5 36 h. Besides, during the

evolution between t 5 0 and t 5 60 h, there exist two

peaks in the EKE growth rate (see the dashed black line

in Fig. 9a), one before the jet-crossing phase around t 5
12h and another at about t5 60h. The average of the sum

of the three terms (hEl �DliS 1 hCViS 1 hCI/2iS)/hK0
liS

(solid black line in Fig. 9a) follows the same evolution

as the EKE growth rate with the former being slightly

greater than the latter because of horizontal energy

outward flux at the boundary of the considered area.

Note in particular that there exist also two peaks in

(hEl �DliS 1 hCViS 1 hCI/2iS)/hK0
liS around t 5 12 and

t 5 60 h. The barotropic conversion rate hEl �DliS/hK0
liS

(gray line with stars in Fig. 9a) is mainly negative and its

fluctuations play a minor role, albeit not negligible,

in the evolution of (hEl �DliS 1 hCViS 1 hCI/2iS)/hK0
liS.

As the two disturbances get closer to the jet axis, be-

cause the vertical shear increases, hCI/2iS/hK0
liS (gray

line with diamonds in Fig. 9a) is more and more posi-

tive and hCViS/hK0
liS (gray line with triangles in Fig. 9a)

is more and more negative because of a stronger baro-

tropic PV gradient close to the jet axis consistent with

section 3. Note this evolution is also consistent with the

uniform anticyclonic-shear case of Fig. 5b. On the con-

trary, once the disturbance is located on the cyclonic

side, the amplitudes of hCI/2iS/hK0
liS and hCViS/hK0

liS
decrease similarly to the uniform cyclonic-shear case

of Fig. 5d. This is the sum of hCV 1 CI/2iS/hK0
liS that

explains the two growth stages, one on the anticyclonic

side and the other on the cyclonic side, as shown by the

similarity between hCV 1 CI/2iS/hK0
liS (solid black line

in Fig. 9b) and hEl �Dl 1 CV 1 CI/2iS/hK0
liS (solid

black line in Fig. 9a). However, the two peaks are

related to different terms and mechanisms. During the

first growth stage, the peak of hCV 1 CI/2iS/hK0
liS is

mainly due to the linear term Flin (dashed curve in

FIG. 9. The EKE budget at the lower layer in the simulation with disturbances embedded in

a meridionally confined jet. (a) The time evolution of the kinetic energy growth rate

(1/hK0
liS)(dhK0

liS/dt) is shown by the dashed black line, the convergence of the vertical ageo-

strophic fluxes hCViS/hK0
liS by the gray line with triangles, the baroclinic internal conversion

rate hCI=2iS/hK0
liS by the gray line with diamonds, the barotropic conversion term

hEl �DliS/hK0
liS by the gray line with stars, and the sum of all three tendency terms by the solid

black line. The vertical black line indicates the jet-crossing time. (b) The black line, the dashed

gray line, and the dash-dotted gray lines correspond respectively to hCV1CI=2iS/hK0
liS, the

part of hCV1CI=2iS/hK0
liS due to the linear term (F lin), and the part of hCV1CI=2iS/hK0

liS
due to the nonlinear term (Fnl). Spatial averages h�iS are made locally over a square Swith half-

length 1250 km and centered on theminimum perturbation streamfunction at the lower layer at

each time.
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Fig. 9b) while during the second growth stage, the peak

of hCV 1 CI/2iS/hK0
liS is mainly due to the nonlinear

term Fnl (dash-dotted curve in Fig. 9b).

The snapshot of Fig. 10 at t 5 12 h details the spatial

structure of the various vertical velocity forcings (left

column) and the corresponding CV1CI/2 (right col-

umn) during the first growth stage. At that time, the axis

formed by the two disturbances is zonal. This renders

the linear part of the stretching term 2l21sv0
u2l well

anticorrelated with the lower-layer perturbation stream-

function c0
l (Fig. 10a), leading to large positive values of

CV1CI/2 coming from the linear term (Fig. 10b). To

a lesser extent, the disturbances being also southwest–

northeast tilted, the nonlinear part of the vertical velocity

2l21sv0
u2l is very slightly correlated with the lower-layer

perturbation streamfunction c0
l (Fig. 10c), which is

similar to the case of Fig. 3b. It leads to negative values

of CV1CI/2 above the minimum lower-layer pertur-

bation streamfunction c0
l (Fig. 10d) but the local spatial

average has only very weak negative values (see the

dash-dotted line in Fig. 9b). The total CV1CI/2 is thus

strongly positive because of the linear part of the ver-

tical velocity.

At t 5 54 h, the lower-layer perturbation is to the

north-northeast of the upper-layer perturbation (see the

dashed and solid black contours in the left column of

Fig. 11). It implies a weak correlation between the

linear part of the stretching term 2l21sv0
u2l and the

lower-layer perturbation streamfunction c0
l (Fig. 11a).

However, the twodisturbances are both slightly southeast–

northwest horizontally tilted (see in particular the

lower-layer perturbation in Fig. 11). Consistent with

the case of Fig. 3a, this makes the nonlinear part of the

stretching term 2l21sv0
u2l positive close to the mini-

mum of the lower-layer perturbation streamfunction

(Fig. 11c). The nonlinear part of the stretching term

2l21sv0
u2l and the lower-layer perturbation stream-

function are thus significantly anticorrelated. Consis-

tent with this picture, the nonlinear part of CV1CI/2

(Fig. 11d) is positive when averaged around the lower-

layer perturbation. Therefore, the total CV1CI/2 (Fig.

11f) during the second growth stage can be explained

by the nonlinear part of CV1CI/2, which itself is

mainly due to the three-dimensional structure of the

disturbances characterized by a slight southeast–

northwest tilt of the disturbances.

5. Conclusions

The present paper systematically compared the im-

pact of both sides of a baroclinic zonal jet in the growth

of finite-amplitude surface cyclones using a two-layer

quasigeostrophic model. The numerical experiments

consisted in initially embedding localized cyclones at

the lower and upper layer in various basic flows in such

a way that cyclones interact baroclinically with each

other. The first step consisted in systematically analyzing

the impact of cyclonic and anticyclonic uniform back-

ground shears on the eddy kinetic energy budget at the

lower layer over a large range of parameters. Basing on

these results, the second step was dedicated to the dy-

namical understanding of the regeneration phase un-

dergone by the lower-layer cyclone just after it crossed

the upper-layer jet axis.

a. Instantaneous diagnoses

The decomposition of the omega equation permits

identification of the distinct role played by the basic-

state vertical shear, horizontal PV gradient, and hori-

zontal shears on the vertical velocity as well as the role

played by nonlinear terms.

d The presence of the basic-state vertical shear, as is well

known, creates zones of convergence and divergence

of the Q vector and thus ascending and descending

motions respectively to the east and west of a cyclone

(Sanders and Hoskins 1990). Therefore, the lower-

layer cyclone should be located to the east of an upper

cyclone to increase its vorticity via the stretching term.

The effect of a poleward-oriented vertically averaged

PV gradient (such as the planetary vorticity gradient

or the relative vorticity gradient due to meridionally

confined jets) is to diminish the ascending motions

above the lower-layer cyclone, to decrease the stretch-

ing term there, and thus to diminish the lower-layer

vorticity growth. From a kinetic energy perspective,

the vertically averaged PV gradient mainly enhances

the vertical redistribution of energy, which primarily

transfers energy from the lower to upper layer. On the

contrary, the vertical shear favors large internal con-

version rates, a prime source of kinetic energy for

both the lower and upper layers during baroclinic

interaction. Since the vertical redistribution term of

kinetic energy is mainly anticorrelated with the inter-

nal conversion rate in the lower layer, the computation

of their sum is needed to estimate the kinetic energy

evolution. This sum has an insightful formulation since

it is the product of the perturbation stretching term

f0›v
0/›p by the opposite of the perturbation stream-

function2c0, which can be directly linked to the classical
vorticity stretching arguments (Holton 1992).

d Horizontal shears also exert a direct influence on

the omega equation. When the barotropic shear is

increased, ascending motions due to the presence of

the upper-layer cyclone are displaced on its northeast-

ern side for cyclonic shears and on its southeastern
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FIG. 10. Upper-level disturbances (black dashed contours) and lower-level disturbances

(black solid contour) for the run with a meridionally confined jet before the jet-crossing phase

(t 5 12 h). The black contours correspond to (left) the perturbation streamfunction (contour

interval 107m2 s21, negative values only) and (right) the perturbation vorticity (contour in-

terval 53 1025 s21, positive values only). The gray contours in the left column represent (a) the

linear part, (c) the nonlinear part, and (e) the total of the stretching term 2l21sv0
u2l (contour

interval 23 10210 s22). The gray contours in the right column represent (b) the linear part, (d)

the nonlinear part, and (f) the total of the sum ½CV1CI=2]/hK0
liS (contour interval 2 3

1024m2 s23). The light gray band represents values of the basic-state lower-layer zonal wind.
20m s21. The black square represents the area S over which energy growth rates are computed.
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side for anticyclonic shears. The converse occurs when

the upper-layer shear is increased keeping constant

the lower-layer shear. The direct effects of the hori-

zontal shears in the omega equation are thus not

straightforward since they depend on the relative

amplitude of the lower- and upper-layer shears.

d For isotropic cyclones, nonlinear terms in the kinetic

energy budget do not create any asymmetry and

therefore cannot lead to any net growth of the lower-

layer kinetic energy. This symmetry is broken for

elliptic vortices. Consider eddies that are horizontally

stretched along the northeast–southwest direction,

FIG. 11. As in Fig. 10, but after the jet-crossing phase (t 5 54 h).
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which can be the result of the action of an anticyclonic

background shear. If the upper-layer cyclone is up-

stream of the lower one, the nonlinearities lead to a net

loss of eddy kinetic energy. In the case of a northwest–

southeast horizontal tilt, which might be observed

temporarily when vortices are embedded in a back-

ground cyclonic shear, the nonlinear forcing induces an

increase in eddy kinetic energy.

b. Evolution in uniform horizontal background
shears

Then, nonlinear simulations performed with linearly

sheared zonal flows helped us to identify differences in

the lower-layer cyclone growth between cyclonic and

anticyclonic shears. As shown by Gilet et al. (2009), for

the anticyclonic shear, the lower-layer cyclone main-

tains its position to the east of the upper one while this

configuration is only transient for the cyclonic shear.

This has several implications in the energy budget. (i)

The anticyclonic shear allows a much more efficient and

sustainable conversion of background potential energy

to eddy potential energy through baroclinic interaction

than the cyclonic shear for almost the whole range of the

parameters. (ii) The anticyclonic shear allows a more

important internal conversion rate from eddy potential

to eddy kinetic energy than the cyclonic shear. (iii) In

the presence of large barotropic horizontal PV gradient,

the vertical redistribution of kinetic energy is enhanced

in the anticyclonic shear and leads to a greater upward

transfer of kinetic energy than in the cyclonic shear.

Finally, changes in the horizontal shape of the cyclones

also modify barotropic conversion terms.While they are

moderately stretched and do not maintain any fixed

orientation in the cyclonic shear, they are vigorously

horizontally stretched along the dilatation axes in the

anticyclonic shear. This leads to marginal barotropic

conversion rates in the former case but strongly negative

ones in the latter.

Determining which side of a zonal jet is more favor-

able to cyclones deepening is tantamount to quantita-

tively weighting the aforementioned effects, which all

depend on the parameter range. Increasing vertical

shears will favor more the growth on the anticyclonic

side while increasing PV gradient will have the opposite

effect. Generally speaking, the lower-layer kinetic en-

ergy growth is more sensitive to changes in horizontal

shears in the anticyclonic case than in the cyclonic one

but the effects of the upper- and lower-layer shears are

opposite. Increasing the upper-layer shear increases the

growth rates on the anticyclonic side while increasing

the lower-layer shear decreases the growth on the anti-

cyclonic side much more rapidly than on the cyclonic

side. Increasing the two shears in the same way (i.e.,

adding a barotropic shear) is more favorable to the

growth on the cyclonic side. Note finally that less sen-

sitivity was found by changing the spatial scale and

amplitude of the disturbances.

c. Evolution in meridionally confined jets

Finally, in the numerical experiments where the lower

and upper cyclones were initially located on the warm

side of a meridionally confined baroclinic zonal jet, the

cyclones are shown to be able to cross the jet from their

warm to cold sides (i.e., from their anticyclonic to cy-

clonic sides). Two peaks in the kinetic energy growth

rates of the lower-layer cyclone, distinct in nature, were

identified in that particular case, one before the jet-

crossing phase and another after. The first peak is a re-

sult of the classical baroclinic interaction, which involves

the linear part of the vertical velocity that is induced by

the presence of eddies evolving in a baroclinic basic

flow. The second peak is more complex. It is mainly

driven by the nonlinear part of the vertical velocity and

is totally determined by the three-dimensional struc-

ture of the disturbances when they reach the cyclonic

side of the jet. It confirms the results found in the sec-

tion dedicated to linearly-sheared zonal flows where

nonlinear terms were found to favor the growth in the

cyclonic shear.

d. Perspectives

This paper constitutes a new step toward our un-

derstanding of the regeneration process undergone by

surface cyclones during the jet-crossing phase. In Rivi�ere

and Joly (2006), a real surface cyclone was shown to

rapidly deepen during the jet-crossing phase via the

same energy conversion term as in the present paper

(i.e., the product of the stretching term by the pertur-

bation streamfunction). Future studies will investigate

the role of the nonlinear part of the stretching term in

the deepening of such real winter storms. It would be

also of particular interest to make a bridge between this

decomposition into linear and nonlinear parts of the

vertical velocity and the decomposition into its along-

and cross-isentrope components (Keyser et al. 1992). It

is particularly intriguing that the cross-isentrope com-

ponent of the Q vector was shown to be important to

understand the late stage of some real cyclones (Martin

2006, 2007) similarly to the nonlinear part at the end of

our idealized life cycle. In the present study, the linear

and nonlinear parts respectively exhibit zonally ori-

ented and meridionally oriented dipoles of downdrafts

and updrafts (e.g., see Figs. 11a,c), which are mainly

parallel and perpendicular to the basic-flow isentropes.

However, the basic-flow isentropes being very different
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from the total-flow isentropes for mature cyclones, no

direct link can be made between the two decompositions.

More systematic analysis would be needed in future

studies to clarify this aspect.
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